Advertisement

Hyperfine Interactions

, 240:71 | Cite as

Organic residues as adsorbent for the removal of ciprofloxacin from aqueous solution

  • María Eulalia PeñafielEmail author
  • Eulalia Vanegas
  • Daniel Bermejo
  • José María Matesanz
  • María P Ormad
Article
  • 45 Downloads
Part of the following topical collections:
  1. Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18-23 November 2018, Santiago de Chile, Chile

Abstract

Ciprofloxacin was used to study the adsorbent properties of three organic residues: corn cob and rice husk. The study encompassed measuring the effect of the biomass dose, pH, contact time, temperature and initial concentration of the drug. The optimal dose of the adsorbent was established in 2 and 6 g L−1 for the corn cob and rice husk, respectively. The pH strongly affects the adsorption of ciprofloxacin; the optimum pH for the absorption of ciprofloxacin onto the three biomasses is 6. The experiments show a rapid adsorption that hits equilibrium in 60 min for the rice husk and 40 min for corn cob. The temperature has little in fluence with a tendency to a decrease in the percentage of removal when the temperature increases. The removal percentage of ciprofloxacin reaches 56.3% for corn cob and 59.7% for rice husk given an ambient temperature of 20 °C and a ciprofloxacin concentration of 5 mg L−1. The experimental adsorption data can be fitted well by the Freundlich model and the kinetic data by a pseudo second order model. The obtained results suggest that maize and rice husk can be used as low-cost biosorbents for the removal of ciprofloxacin from aqueous solutions.

Keywords

Ciprofloxacin Biosorption Corn cob Rice husk 

Notes

Acknowledgements

The authors thank the funding from the Dirección de Investigación de la Universidad de Cuenca (DIUC) through the project DUIC_XIV_2016_037.

References

  1. 1.
    Terzic, S., Senta, I., Ahel, M., Gros, M., Petrovic, M.: Occurrence and fate of emerging wastewater contaminants in Western Balkan region. Sci. Total Environ. 399, 66–77 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., et al.: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473–474, 619–641 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Bueno, M.J.M., Gomez, M.J., Herrera, S., Hernando, M.D., Agüera, A., Fernández-Alba, A.R.: Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environ Pollut [Internet]. 164, 267–273. Available from (2012).  https://doi.org/10.1016/j.envpol.2012.01.038 CrossRefGoogle Scholar
  4. 4.
    Yang, X., Flowers, R.C., Weinberg, H.S., Singer, P.C.: Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res [Internet]. 45(16), 5218–5228. Available from (2011).  https://doi.org/10.1016/j.watres.2011.07.026 CrossRefGoogle Scholar
  5. 5.
    Voloshenko-Rossin, A., Gasser, G., Cohen, K., Gun, J., Cumbal-Flores, L., Parra-Morales, W., Sarabia, F., Ojeda, F., Lev, O.: Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro–Guayllabamba–Esmeraldas rivers. Env Sci Process Impacts. 17(1), 41–53 (2015)Google Scholar
  6. 6.
    Patrolecco, L., Rauseo, J., Ademollo, N., Grenni, P., Cardoni, M., Levantesi, C., Luprano, M.L., Caracciolo, A.B.: Persistence of the antibiotic sulfamethoxazole in river water alone or in the co-presence of ciprofloxacin. Sci Total Environ [Internet]. 640, 1438–1446. Available from (2018).  https://doi.org/10.1016/j.scitotenv.2018.06.025 ADSCrossRefGoogle Scholar
  7. 7.
    Gracia-Lor, E., Sancho, J.V., Serrano, R., Hernández, F.: Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere. 87(5), 453–462 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Huang, C.-H., Renew, J.E., Smeby, K.L., Pinkston, K., Sedlak, D.L.: Assessment of potential anbibiotic contaminants in water and preliminary occurrence analysis. J Contemp Water Res Educ. 120(1), 4 (2011)Google Scholar
  9. 9.
    Milić, N., Milanović, M., Letić, N.G., Sekulić, M.T., Radonić, J., Mihajlović, I., Miloradov, M.V.: Occurrence of antibiotics as emerging contaminant substances in aquatic environment. Int. J. Environ. Health Res. [Internet. 23(4), 296–310 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, Y.X., Ngo, H.H., Guo, W.S.: Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Sci. Total Environ. 533, 32–39 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, H., Gao, B., Li, H.: Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater [Internet]. 282, 201–207. Available from (2015).  https://doi.org/10.1016/j.jhazmat.2014.03.063 CrossRefGoogle Scholar
  12. 12.
    Zhao, P., Yu, F., Wang, R., Ma, Y., Wu, Y.: Sodium alginate/graphene oxide hydrogel beads as permeable reactive barrier material for the remediation of ciprofloxacin-contaminated groundwater. Chem. Int. 200, 612–620. Available from (2018).  https://doi.org/10.1016/j.chemosphere.2018.02.157 CrossRefGoogle Scholar
  13. 13.
    Fei, Y., Yong, L., Sheng, H., Jie, M.: Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci. 484, 196–204 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Li, H., Zhang, D., Han, X., Xing, B.: Adsorption of antibiotic ciprofloxacin on carbon nanotubes: PH dependence and thermodynamics. Chem. Int. 95, 150–155. Available from (2014).  https://doi.org/10.1016/j.chemosphere.2013.08.053 CrossRefGoogle Scholar
  15. 15.
    Palacio, D.A., Rivas, B.L., Urbano, B.F.: Ultrafiltration membranes with three water-soluble polyelectrolyte copolymers to remove ciprofloxacin from aqueous systems. Chem Eng J [Internet]. 351(April), 85–93. Available from (2018).  https://doi.org/10.1016/j.cej.2018.06.099 CrossRefGoogle Scholar
  16. 16.
    Garg, U., Kaur, M.P., Jawa, G.K., Sud, D., Garg, V.K.: Removal of cadmium ( II ) from aqueous solutions by adsorption on agricultural waste biomass. J Hazard Mate. 154, 1149–1157 (2008)CrossRefGoogle Scholar
  17. 17.
    Tomczak E, Blus M. Sorption dynamics of Direct Orange 26 dye onto a corncob plant sorbent. Ecol Chem Eng S [Internet]. 23(1), 175–185. Available from (2016) http://www.degruyter.com/view/j/eces.2016.23.issue-1/eces-2016-0012/eces-2016-0012.xml CrossRefGoogle Scholar
  18. 18.
    Teixeira, S., Delerue-matos, C., Santos, L.: Removal of sulfamethoxazole from solution by raw and chemically treated walnut shells. Environ. Sci. Pollut. Res. 19, 3096–3106 (2012)CrossRefGoogle Scholar
  19. 19.
    Villaescusa, I., Fiol, N., Poch, J., Bianchi, A., Bazzicalupi, C.: Mechanism of paracetamol removal by vegetable wastes: the contribution of Π-Π interactions, hydrogen bonding and hydrophobic effect. Desalination. 270(1–3), 135–142 (2011)CrossRefGoogle Scholar
  20. 20.
    Rezić, I.: Cellulosic fibers - Biosorptive materials and indicators of heavy metals pollution. Microchem. J. 107, 63–69 (2013)CrossRefGoogle Scholar
  21. 21.
    Nasiruddin Khan, M., Farooq Wahab, M.: Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. J. Hazard. Mater. 141(1), 237–244 (2007)CrossRefGoogle Scholar
  22. 22.
    Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., del Valle, J.O., et al.: Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144(1), 42–50 (2008)CrossRefGoogle Scholar
  23. 23.
    Fonseca-Correa, R., Giraldo, L., Moreno-Piraján, J.C.: Trivalent chromium removal from aqueous solution with physically and chemically modified corncob waste. J Anal Appl Pyrolysis [Internet]. 101, 132–141. Available from (2013).  https://doi.org/10.1016/j.jaap.2013.01.019 CrossRefGoogle Scholar
  24. 24.
    Guo H, Zhang S, Kou Z, Zhai S, Ma W, Yang Y. Removal of cadmium(II) from aqueous solutions by chemically modified maize straw. Carbohydr Polym [Internet]. 115, 177–185. Available from (2015).  https://doi.org/10.1016/j.carbpol.2014.08.041 CrossRefGoogle Scholar
  25. 25.
    Shan, W., Zhao, Z., Fang, D., Lou, Z., Xu, J., Yue, S., Biswas, B.K., Xiong, Y.: Investigation on the selective adsorption of Mo(VI) by using modified rice husk and corn straw. Waste Biomass Valorization. 4(2), 385–393 (2013)CrossRefGoogle Scholar
  26. 26.
    Mondal, S., Aikat, K., Halder, G.: Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: equilibrium, kinetics, thermodynamics and modeling. Ecol Eng [Internet]. 92, 158–172. Available from (2016).  https://doi.org/10.1016/j.ecoleng.2016.03.022 CrossRefGoogle Scholar
  27. 27.
    Mondal, S., Bobde, K., Aikat, K., Halder, G.: Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies. J Environ Manage [Internet]. 182, 581–594. Available from (2016).  https://doi.org/10.1016/j.jenvman.2016.08.018 CrossRefGoogle Scholar
  28. 28.
    Wu, S., Zhao, X., Li, Y., Zhao, C., Du, Q., Sun, J., et al.: Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem Eng J [Internet]. 230, 389–395. Available from (2013).  https://doi.org/10.1016/j.cej.2013.06.072 CrossRefGoogle Scholar
  29. 29.
    Yin, D., Xu, Z., Shi, J., Shen, L., He, Z.: Adsorption characteristics of ciprofloxacin on the schorl: kinetics, thermodynamics, effect of metal ion and mechanisms. J Water Reuse Desalination [Internet. 8(3), 350–359 (2018 Sep) Available from: https://iwaponline.com/jwrd/article/8/3/350-359/38034. Accessed 26 Sep 2018CrossRefGoogle Scholar
  30. 30.
    Zhang, C., Qiao, G., Zhao, F., Wang, Y.: Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J Mol Liq [Internet]. 163(1), 53–56. Available from (2011).  https://doi.org/10.1016/j.molliq.2011.07.005 CrossRefGoogle Scholar
  31. 31.
    Peng, X., Hu, F., Huang, J., Wang, Y., Dai, H., Liu, Z.: Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: kinetics, isotherm, adsorption mechanisms studies. Microporous Mesoporous Mater [Internet]. 228, 196–206. Available from (2016).  https://doi.org/10.1016/j.micromeso.2016.03.047 CrossRefGoogle Scholar
  32. 32.
    Kumari, P.: Application of sugarcane bagasse for the removal of chromium ( vi ) and zinc ( ii ) from aqueous solution. Int Res J Eng Technol. 04, 1670–1673 (2017)Google Scholar
  33. 33.
    Brandão, P.C., Souza, T.C., Ferreira, C.A., Hori, C.E., Romanielo, L.L.: Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent. J. Hazard. Mater. 175(1–3), 1106–1112 (2010)CrossRefGoogle Scholar
  34. 34.
    Shen, J., Duvnjak, Z.: Adsorption kinetics of cupric and cadmium ions on corncob particles. Process Biochem. 40(11), 3446–3454 (2005)CrossRefGoogle Scholar
  35. 35.
    Moubarik, A., Grimi, N.: Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Res Int [Internet]. 73, 169–175. Available from (2015).  https://doi.org/10.1016/j.foodres.2014.07.050 CrossRefGoogle Scholar
  36. 36.
    Witek-Krowiak A, Szafran RG, Modelski S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination [Internet]. 2011;265(1–3):126–134. Available from: doi:  https://doi.org/10.1016/j.desal.2010.07.042 CrossRefGoogle Scholar
  37. 37.
    Divband Hafshejani, L., Hooshmand, A., Naseri, A.A., Mohammadi, A.S., Abbasi, F., Bhatnagar, A.: Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecol Eng [Internet]. 95, 101–111. Available from (2016).  https://doi.org/10.1016/j.ecoleng.2016.06.035 CrossRefGoogle Scholar
  38. 38.
    Sun, Y., Yue, Q., Gao, B., Gao, Y., Xu, X., Li, Q., Wang, Y.: Adsorption and cosorption of ciprofloxacin and Ni ( II ) on activated carbon-mechanism study. J Taiwan Inst Chem Eng [Internet]. 45, 681–688 (2013; Available from).  https://doi.org/10.1016/j.jtice.2013.05.013 CrossRefGoogle Scholar
  39. 39.
    Li, X., Chen, S., Fan, X., Quan, X., Tan, F., Zhang, Y., Gao, J.: Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon. J Colloid Interface Sci [Internet]. 447, 120–127. Available from (2015).  https://doi.org/10.1016/j.jcis.2015.01.042 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María Eulalia Peñafiel
    • 1
    Email author
  • Eulalia Vanegas
    • 1
  • Daniel Bermejo
    • 1
  • José María Matesanz
    • 2
  • María P Ormad
    • 2
  1. 1.Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical SciencesUniversity of CuencaCuencaEcuador
  2. 2.School of Engineering and Architecture/ Institute of Environmental Sciences, SpainUniversity of ZaragozaZaragozaSpain

Personalised recommendations