Advertisement

Hyperfine Interactions

, 240:64 | Cite as

Modern African nuclear detector laboratory

Development of state-of-the-art in-house detector facility at the University of the Western Cape
  • K. KapoorEmail author
  • J. N. OrceEmail author
  • K. Abrahams
  • E. Akakpo
  • Z. Bester
  • D. G. Jenkins
  • K. L. Jordaan
  • M. Y. Jones
  • M. A. Kamedien
  • R. Lindsay
  • B. Lomberg
  • S. Masango
  • C. Ngwetsheni
  • S. S. Ntshangase
  • N. Radebe
  • S. Triambak
  • J. J. Van Zyl
Article
  • 21 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10–15 February 2019

Abstract

The upcoming detector facility aims at developing new state-of-the-art particle detectors as well as providing hands-on training to postgraduate students using both analog and digital signal processing from nuclear radiation detectors. The project is two-fold and aims at developing: 1) ancillary detectors to be coupled with the new GAMKA array at iThemba LABS. Of particular interest to our group is the determination of nuclear shapes, which depend on the hyperfine splitting of magnetic substates; 2) PET scanners for cancer imaging using a cheaper technology. Performance of NaI(Tl) inorganic scintillator detectors has been evaluated using PIXIE-16 modules from XIA digital electronics. Gamma-ray energy spectra were acquired from 60Co and 137Cs radioactive sources to calculate the detector resolution as well as to optimize the digital parameters. The present study focuses on improving and optimizing the slow and fast filter parameters for NaI(Tl) detectors which can eventually be used in the list mode of data aquisition.

Keywords

NaI(Tl) Digital signal processing PIXIE16 Novel particle detectors 

Notes

Acknowledgements

We are highly thankful to all contributors to this upcoming detector facility at the University of the Western Cape, including Rosita De Oliveira (Finance), Chantal Dreyer (Budgets), Rene Peacock (International Payments), Chantal Keeble, Lucien Ryan, Layan Daley, Owen Swanson (Information and Communication Services), Gaironesa Barnes, Johan Cloete (Business & Innovation), and Jeanine Schroeder (Human Resources). We would like to thank S. Paulauskas for providing valuable feedback for the data acquisition, and P. Papka and D. T. Doherty for instrumental support. One the authors K. Kapoor would also like to thank the Science and Technology Facilities Council in the UK through the Global Challenges Research Fund and the University of York (UK) for providing funding, support and fruitful discussions at various stages.

References

  1. 1.
  2. 2.
    Zhang, W., et al.: Performance evaluation and optimization for a newly developed digital list-mode data acquisition Compton suppression spectrometer. Appl. Radiat. Isot. 81, 96 (2013)CrossRefGoogle Scholar
  3. 3.
    Das, S., et al.: A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy. Nuclear Inst. Methods Phys. Res. A 893, 138 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Orce, J.N., et al.: Reorientation-effect measurement of the \(\langle 2_{1}^{+} || \hat {E2} || {2}_{1}^{+}\rangle \) matrix element in 10Be. Phys. Rev. C 86(R), 041303 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Raju, M.K., et al.: Reorientation-effect measurement of the first 2+ state in 12C: confirmation of oblate deformation. Phys. Lett. B. 777, 250 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Orce, J.N.: New formulae for the (− 2) moment of the photo-absorption cross section, σ − 2. Phys. Rev. C 91, 064602 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Orce, J.N.: Nuclear polarizability: the sleeping beauty of nuclear physics. In: Proceedings of the 4th South Africa - JINR Symposium (Dubna), “Few to Many Body Systems: Models, Methods and Application”, 64 (2015)Google Scholar
  8. 8.
    Ngwetsheni, C., Orce, J.N.: Continuing influence of shell effects at high-excitation energies. Phys. Lett. B 792, 335 (2019)ADSCrossRefGoogle Scholar
  9. 9.
    Kumar, K.: Intrinsic quadrupole moments and shapes of nuclear ground states and excited states. Phys. Rev. Lett. 28, 249 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    Cline, D.: Nuclear shapes studied by Coulomb excitation. Ann. Rev. Nucl. Part. Sci. 36, 683 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    Häusser, O. In: Cerny, J. (ed.) : Reorientation Effect, in Nuclear Spectroscopy and Reactions C. Academic, New York (1974)Google Scholar
  12. 12.
    Warr, N., et al.: The Miniball spectrometer. Eur. Phys. J. A 49, 40 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Kapoor
    • 1
    Email author
  • J. N. Orce
    • 1
    Email author
  • K. Abrahams
    • 1
  • E. Akakpo
    • 1
  • Z. Bester
    • 1
  • D. G. Jenkins
    • 2
  • K. L. Jordaan
    • 1
  • M. Y. Jones
    • 1
  • M. A. Kamedien
    • 1
  • R. Lindsay
    • 1
  • B. Lomberg
    • 1
  • S. Masango
    • 1
  • C. Ngwetsheni
    • 1
  • S. S. Ntshangase
    • 3
  • N. Radebe
    • 1
  • S. Triambak
    • 1
  • J. J. Van Zyl
    • 4
  1. 1.Department of Physics and AstronomyUniversity of the Western CapeBellvilleSouth Africa
  2. 2.Department of PhysicsUniversity of YorkYorkUK
  3. 3.Department of PhysicsUniversity of ZululandKwaDlangezwaSouth Africa
  4. 4.Department of PhysicsUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations