Hyperfine Interactions

, 240:70 | Cite as

Development of the St. Benedict Paul Trap at the Nuclear Science Laboratory

  • Daniel BurdetteEmail author
  • Maxime Brodeur
  • Patrick O’Malley
  • Adrian Valverde
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018


There are various tests of the Standard Model aimed at probing new physics. One such test is to check the unitarity of the Cabbibo-Kobayashi-Masakawa matrix, with the most precise result given by the normalization of the top row. The precision of this result is limited by the uncertainty of the Vud and Vus elements. The most precise result for Vud is currently derived from the ensemble of superallowed \(0^{+} \rightarrow 0^{+}\) nuclear β decays, but the determination from other transitions is desirable to check theoretical calculations and the potential presence of unknown systematic contributions. Other candidates include neutron decay, pion decay, and the ensemble of nuclear mirror decays. While the neutron and pion decay present their own unique experimental challenges, the group of mirror decays require the precise determination of the Fermi to Gamow-Teller mixing ratio. This value can be extracted from a measurement of the β-neutrino angular correlation parameter, αβν, which is currently only known for five mirror decays. A new ion trapping system, St. Benedict (Superallowed Transition Beta-Neutrino Decay-Ion-Coincidence Trap), to be located in the Nuclear Science Laboratory at the University of Notre Dame is currently under construction and will ultimately aim to extract αβν for more mirror decays. The focus of this work is on simulations that will guide the design of the Paul trap which will be used for the measurement.


Weak interaction Linear Paul trap Ion confinement 



This work was conducted with the support of the University of Notre Dame and the National Science Foundation under Grants No. PHY-1725711 and PHY-1713857.


  1. 1.
    Severijns, N., Naviliat-Cuncic, O.: Symmetry tests in nuclear beta decay. Annu. Rev. Nucl. Part. Sci. 61(1), 23–46 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Hobbs, J.D., Neubauer, M.S., Willenbrock, S.: Tests of the standard electroweak model at the energy frontier. Rev. Mod. Phys. 84, 1477–1526 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Naviliat-Cuncic, O., González-Alonso, M.: Prospects for precision measurements in nuclear β decay in the lhc era. Annalen der Physik 525, 8–9, 600–619 (2013)CrossRefGoogle Scholar
  4. 4.
    Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson, R.P.: Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957)ADSCrossRefGoogle Scholar
  5. 5.
    Fabian, X., Ban, G., Boussaïd, R., Breitenfeldt, M., Couratin, C., Delahaye, P., Durand, D., Finlay, P., Fléchard, X., Guillon, B., Lemière, Y., Leredde, A., Liénard, E., Méry, A., Naviliat-Cuncic, O., Pierre, E., Porobic, T., Quéméner, G., Rodríguez, D., Severijns, N., Thomas, J.C., Van Gorp, S.: Precise measurement of the angular correlation parameter a βν in the β decay of 35ar with lpctrap. EPJ Web of Conferences 66, 08002 (2014)CrossRefGoogle Scholar
  6. 6.
    Sternberg, M.G., Segel, R., Scielzo, N.D., Savard, G., Clark, J.A., Bertone, P.F., Buchinger, F., Burkey, M., Caldwell, S., Chaudhuri, A., Crawford, J.E., Deibel, C.M., Greene, J., Gulick, S., Lascar, D., Levand, A.F., Li, G., Pérez Galván, A., Sharma, K.S., Van Schelt, J., Yee, R.M., Zabransky, B.J.: Limit on tensor currents from 8Liβ decay. Phys. Rev. Lett. 115, 182501 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Hardy, J.C., Towner, I.S.: Ckm unitarity normalization tests, present and future. Ann. Phys. 525(7), 443–451 (2013)CrossRefGoogle Scholar
  8. 8.
    Kobayashi, M., Maskawa, T.: Cp-violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49(2), 652–657 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    Hardy, J.C., Towner, I.S.: The current evaluation of vud (2015)Google Scholar
  10. 10.
    Wietfeldt, F.E., Greene, G.L.: Colloquium: the neutron lifetime. Rev. Mod. Phys. 83, 1173–1192 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Severijns, N., Tandecki, M., Phalet, T., Towner, I.S.: \(\mathcal {F}t\) values of the t = 1/2 mirror β transitions. Phys. Rev. C 78, 055501 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Hardy, J.C., Towner, I.S.: Superallowed \({0}^{+}\rightarrow {0}^{+}\) nuclear β decays: 2014 critical survey, with precise results for Vud and ckm unitarity. Phys. Rev. C 91, 025501 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Valverde, A.A., Brodeur, M., Burdette, D.P., Clark, J.A., Klimes, J.W., Lascar, D., O’Malley, P.D., Ringle, R., Savard, G., Varentsov, V.: Stopped, bunched beams for the TwinSol facility. Hyperfine Interact 240(38). (2019)
  14. 14.
    Severijns, N., Naviliat-Cuncic, O.: Structure and symmetries of the weak interaction in nuclear beta decay. Phys. Scr. T152, 014018 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Dahl, D.A: Simion for the personal computer in reflection. Int. J. Mass Spectrom. 200(1), 3–25 (2000)CrossRefGoogle Scholar
  16. 16.
    Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J.J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D.: Geant4—a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: accelerators, Spectrometers. Detectors and Associated Equipment 506(3), 250–303 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Notre DameNotre DameUSA

Personalised recommendations