Advertisement

Hyperfine Interactions

, 240:65 | Cite as

Precision mass measurements of 44V and 44mV for nucleon-nucleon interaction studies

  • Jason SurbrookEmail author
  • Marion MacCormick
  • Georg Bollen
  • Maxime Brodeur
  • Martin Eibach
  • Kerim Gulyuz
  • Alec Hamaker
  • Christopher Izzo
  • Silvia M. Lenzi
  • Daniel Puentes
  • Matthew Redshaw
  • Ryan Ringle
  • Rachel Sandler
  • Stefan Schwarz
  • Peter Schury
  • Nadya Smirnova
  • Chandana Sumithrarachchi
  • Adrian A. Valverde
  • Antonio C. C. Villari
  • Isaac T. Yandow
Article
  • 12 Downloads
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September–5 October 2018

Abstract

We discuss the motivation and technique of Penning trap mass spectrometry applied to radioactive 44V and 44mV, using the LEBIT 9.4 T Penning trap mass spectrometer at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. A complementary measurement of these nuclides, performed at the CSRe in Lanzhou, China, was recently published, but with errors several times larger than obtainable for a short-lived radionuclide in a Penning trap. Interpretation of the higher precision results is ongoing and a full accounting of this measurement is anticipated in the coming months.

Keywords

44-vanadium Nuclear shell model Penning trap mass spectrometry 

Notes

Acknowledgements

This work was conducted with the support of Michigan State University, the National Science Foundation under Contracts No. PHY-1565546 and No. PHY-1713857, and the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0015927. The work leading to this publication has also been supported by a DAAD P. R. I. M. E. fellowship with funding from the German Federal Ministry of Education and Research and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007/2013 under REA Grant Agreement No. 605728. MMC acknowledges key support from NSCL as part of the transnational MoU agreement between ENSAR2 and the FRIB Laboratory.

References

  1. 1.
    Wigner, E.: In: Proceedings of the Robert A. Welch Foundation Conference 1. Reproduced in Benchmark Papers in Nuclear Physics, Vol. 1: Nuclear Analogue States, Edited by D. Robson and J.D. Fox, John Wiley & Sons, New York (1976), pp 67–91 (1957)Google Scholar
  2. 2.
    Lam, Y.H., et al.: The isobaric multiplet mass equation for A ≤ 71 revisited. Atom Data Nucl Tables 99, 680–703 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    MacCormick, M., Audi, G.: Evaluated experimental isobaric analogue states from T = 1/2 to T = 3 and associated IMME coefficients. Nucl. Phys. A 925, 61–95 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Ormand, W.E., Brown, B.A.: Empirical Isospin-nonconserving Hamiltonians for shell-model calculations. Nucl. Phys. A 491, 1–23 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    Tu, X.L., et al.: Indirect mass determination for the neutron-deficient nuclides 44V, 48Mn, 52Co and 56Cu. Nucl. Phys. A 945, 89–94 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Lam, Y.H., Smirnova, N.A., Caurier, E.: Isospin nonconservation in sd-shell nuclei. Phys. Rev. C 87, 054304 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Ormand, W.E., Brown, B.A.: Isospin-mixing corrections for fp-shell Fermi transitions. Phys. Rev. C 52, 2455–2460 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Audi, G, et al.: The Ame2012 atomic mass evaluation, (I). Evaluation of input data, adjustment procedures. Chin. Phys. C 36, 1287–1602 (2012)CrossRefGoogle Scholar
  9. 9.
    Audi, G, et al.: The Nubase2012 evaluation of nuclear properties. Chin. Phys. C 36, 1157–1286 (2012)CrossRefGoogle Scholar
  10. 10.
    Wang, M, et al.: The Ame2012 atomic mass evaluation, (II). Tables, graphs and references. Chin. Phys. C 36, 1603–2014 (2012)CrossRefGoogle Scholar
  11. 11.
    Wang, M, et al.: The Ame2016 atomic mass evaluation, (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Hagberg, E, et al.: Beta decays of 44V and 52Co. Nucl. Phys. A 613, 183–198 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Stadlmann, J, et al.: Direct mass measurement of bare short-lived 44V,48Mn,41Ti and 45Cr ions with isochronous mass spectrometry. Phys. Lett. B 586, 27–33 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Y.H., et al.: Isochronous mass measurements of T z = − 1 fp-shell nuclei from projectile fragmentation of 58Ni. Phys. Rev. C 98, 014319 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Bentley, M.A., Lenzi, S.M.: Coulomb energy differences between high-spin states in isobaric multiplets. Prog. Part. Nucl. Phys. 59, 497–561 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Ringle, R, et al.: Penning trap mass spectrometry of rare isotopes produced via projectile fragmentation at the LEBIT facility. Int. J. Mass Spectrom. 349–350, 87–93 (2013)CrossRefGoogle Scholar
  17. 17.
    Morrissey, D, et al.: Commissioning the A1900 projectile fragment separator. Nucl. Inst. Methods Phys. Res. B 204, 90–96 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Cooper, K, et al.: Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Inst. Methods Phys. Res. A 763, 543–546 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Schwarz, S, et al.: The LEBIT ion cooler and buncher. Nucl. Inst. Methods Phys. Res. A 816, 131–141 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Brown, L.S., Gabrielse, G.: Precision spectroscopy of a charged particle in an imperfect Penning trap. Phys. Rev. A 25, 2423 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    Gräff, G., Kalinowsky, H., Traut, J.: A direct determination of the proton electron mass ratio. Z. Phys. A 297, 35–39 (1980)ADSCrossRefGoogle Scholar
  22. 22.
    Ringle, R, et al.: A “Lorentz” steerer for ion injection into a Penning trap. Int. J. Mass Spectrom. 263, 38 (2007)CrossRefGoogle Scholar
  23. 23.
    König, M, et al.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. Ion Process 142, 95–116 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Schury, P, et al.: Beam purification techniques for low energy rare isotope beams from a gas cell. Hyperfine Interact. 173, 165–170 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Evaluated nuclear structure data file, http://www.nndc.bnl.gov/ensdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jason Surbrook
    • 1
    • 2
    Email author
  • Marion MacCormick
    • 3
  • Georg Bollen
    • 1
    • 4
  • Maxime Brodeur
    • 5
  • Martin Eibach
    • 2
    • 6
  • Kerim Gulyuz
    • 2
  • Alec Hamaker
    • 1
    • 2
  • Christopher Izzo
    • 1
    • 2
  • Silvia M. Lenzi
    • 7
  • Daniel Puentes
    • 1
    • 2
  • Matthew Redshaw
    • 2
    • 8
    • 9
  • Ryan Ringle
    • 2
  • Rachel Sandler
    • 8
    • 9
  • Stefan Schwarz
    • 2
  • Peter Schury
    • 10
  • Nadya Smirnova
    • 11
  • Chandana Sumithrarachchi
    • 2
  • Adrian A. Valverde
    • 5
  • Antonio C. C. Villari
    • 4
  • Isaac T. Yandow
    • 1
    • 2
  1. 1.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  2. 2.National Superconducting Cyclotron LaboratoryEast LansingUSA
  3. 3.Institut de Physique Nucléaire, IN2P3-CNRSUniversité Paris-Sud, Université Paris-SaclayOrsay CedexFrance
  4. 4.Facility for Rare Isotope BeamsEast LansingUSA
  5. 5.Department of PhysicsUniversity of Notre DameNotre DameUSA
  6. 6.Institut für PhysikUniversität GreifswaldGreifswaldGermany
  7. 7.Dipartimento di Fisica dell’Universià and INFNSezione di PadovaPadovaItaly
  8. 8.Department of PhysicsCentral Michigan UniversityMount PleasantUSA
  9. 9.Science of Advanced Materials ProgramCentral Michigan UniversityMount PleasantUSA
  10. 10.Wako Nuclear Science Center (WNSC), Institute of Particle and Nuclear Studies (IPNS)High Energy Accelerator Research Organization (KEK)WakoJapan
  11. 11.CENBG (UMR 5797 - Université Bordeaux 1 - CNRS/IN2P3)Gradignan CedexFrance

Personalised recommendations