Advertisement

Hyperfine Interactions

, 240:61 | Cite as

Direct decay-energy measurement as a route to the neutrino mass

  • J. KartheinEmail author
  • D. Atanasov
  • K. Blaum
  • S. Eliseev
  • P. Filianin
  • D. Lunney
  • V. Manea
  • M. Mougeot
  • D. Neidherr
  • Y. Novikov
  • L. Schweikhard
  • A. Welker
  • F. Wienholtz
  • K. Zuber
Article
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Abstract

A high-precision measurement of the 131Cs→131Xe ground-to-ground-state electron-capture QEC-value was performed using the ISOLTRAP mass spectrometer at ISOLDE/CERN. The novel PI-ICR technique allowed to reach a relative mass precision δm/m of 1.4 ⋅ 10− 9. A mass resolving power mm exceeding 1 ⋅ 107 was obtained in only 1s trapping time. Allowed electron-capture transitions with sub-keV or lower decay energies are of high interest for the direct determination of the νe mass. The new measurement improves the uncertainty on the ground-to-ground-state QEC-value by a factor 25 precluding the 131Cs→131Xe pair as a feasible candidate for the direct determination of the νe mass.

Keywords

PI-ICR β-decay Neutrino mass High-precision mass spectrometry 

Notes

Acknowledgements

We thank the ISOLDE technical group and the ISOLDE Collaboration for their professional help. We acknowledge support by the Max Planck Society, the German Federal Ministry of Education and Research (BMBF) (05P12HGCI1, 05P12HGFNE, and 05P15ODCIA), the French IN2P3, the ExtreMe Matter Institute (EMMI) at GSI, and the European Union’s Horizon 2020 research and innovation programme (654002). Jonas Karthein acknowledges the support by a Wolfgang Gentner Ph.D scholarship of the BMBF (05E12CHA).

References

  1. 1.
    Bellini, G., Ludhova, L., Ranucci, G., Villante, F.L. : Neutrino Oscillations. Adv. High Energy Phys. 2014, 1–28 (2014)Google Scholar
  2. 2.
    Giunti, C., Studenikin, A.: Neutrino electromagnetic interactions: A window to new physics. Rev. Modern Phys. 87(2), 531–591 (2015)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ranitzsch, O., Porst, J.-P., Kempf, S., Pies, C., Schäfer, S., Hengstler, D., Fleischmann, A.: Development of Metallic Magnetic Calorimeters for High Precision Measurements of Calorimetric 187 Re and 163 Ho Spectra. J. Low Temp. Phys. 167, 1004–1014 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, Ch.E., Enss, C., Filianin, P.E., Gastaldo, L., Goncharov, M., Köster, U., Lautenschläger, F., Novikov, Yu.N., Rischka, A., Schüssler, R.X., Schweikhard, L., Türler, A.: Direct measurement of the mass difference of 163 Ho and 163 Dy solves the q-value puzzle for the neutrino mass determination. Phys. Rev. Lett. 115, 062501 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Khazov, Y.U., Mitropolsky, I., Rodionov, A.: Nuclear data sheets for a = 131. Nuclear Data Sheets 107(11), 2715–2930 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Lunney, D.: (on behalf of the ISOLTRAP Collaboration). Extending and refining the nuclear mass surface with ISOLTRAP. J. Phys. G: Nuclear Particle Phys. 44(6), 064008 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Kreim, S., Atanasov, D., Beck, D., Blaum, K., Böhm, Ch., Borgmann, Ch., Breitenfeldt, M., Cocolios, T.E., Fink, D., George, S., Herlert, A., Kellerbauer, A., Köster, U., Kowalska, M., Lunney, D., Manea, V., Minaya Ramirez, E., Naimi, S., Neidherr, D., Nicol, T., Rossel, R.E., Rosenbusch, M., Schweikhard, L., Stanja, J., Wienholtz, F., Wolf, R.N., Zuber, K.: Recent exploits of the ISOLTRAP mass spectrometer. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 317, 492–500 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Mukherjee, M., Beck, D., Blaum, K., Bollen, G., Dilling, J., George, S., Herfurth, F., Herlert, A., Kellerbauer, A., Kluge, H.J., Schwarz, S., Schweikhard, L., Yazidjian, C.: ISOLTRAP: An on-line Penning trap for mass spectrometry on short-lived nuclides. Europ. Phys. J. A 35(1), 1–29 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Borge, M.J.G., Blaum, K.: Focus on Exotic Beams at ISOLDE: A Laboratory Portrait. J. Phys. G: Nuclear Particle Phys. 45(1), 010301 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Herfurth, F., Dilling, J., Kellerbauer, A., Bollen, G., Henry, S., Kluge, H.-J., Lamour, E., Lunney, D., Moore, R.B., Scheidenberger, C., Schwarz, S., Sikler, G., Szerypo, J.: A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nuclear Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors Assoc. Equip. 469(2), 254–275 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Wolf, R.N., Wienholtz, F., Atanasov, D., Beck, D., Blaum, K., Borgmann, Ch., Herfurth, F., Kowalska, M., Kreim, S., Litvinov, Yu. A., Lunney, D., Manea, V., Neidherr, D., Rosenbusch, M., Schweikhard, L., Stanja, J., Zuber, K.: ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom. 349–350, 123–133 (2013)CrossRefGoogle Scholar
  12. 12.
    Mougeot, M., Atanasov, D., Blaum, K., Chrysalidis, K., Day Goodacre, T., Fedorov, D., Fedosseev, V., George, S., Herfurth, F., Holt, J.D., Lunney, D., Manea, V., Marsh, B., Neidherr, D., Rosenbusch, M., Rothe, S., Schweikhard, L., Schwenk, A., Seiffert, C., Simonis, J., Stroberg, S.R., Welker, A., Wienholtz, F., Wolf, R.N., Zuber, K.: Precision Mass Measurements of 58-63 Cr: Nuclear Collectivity Towards the N = 40 Island of Inversion. Phys. Rev. Lett. 120, 232501 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Wienholtz, F., Beck, D., Blaum, K., Borgmann, Ch., Breitenfeldt, M., Cakirli, R.B., George, S., Herfurth, F., Holt, J.D., Kowalska, M., Kreim, S., Lunney, D., Manea, V., Menéndez, J., Neidherr, D., Rosenbusch, M., Schweikhard, L., Schwenk, A., Simonis, J., Stanja, J., Wolf, R.N., Zuber, K.: Masses of exotic calcium isotopes pin down nuclear forces. Nature 498(7454), 346–349 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Wienholtz, F., Kreim, S., Rosenbusch, M., Schweikhard, L., Wolf, R.N.: Mass-selective ion ejection from multi-reflection time-of-flight devices via a pulsed in-trap lift. Int. J. Mass Spectrom. 421, 285–293 (2017)CrossRefGoogle Scholar
  15. 15.
    Savard, G., Becker, St., Bollen, G., Kluge, H.-J., Moore, R.B., Otto, Th., Schweikhard, L., Stolzenberg, H., Wiess, U.: A new cooling technique for heavy ions in a Penning trap. Phys. Lett. A 158(5), 247–252 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    König, M., Bollen, G., Kluge, H.-J., Otto, T., Szerypo, J.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. Ion Process. 142(1-2), 95–116 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    George, S., Baruah, S., Blank, B., Blaum, K., Breitenfeldt, M., Hager, U., Herfurth, F., Herlert, A., Kellerbauer, A., Kluge, H.-J., Kretzschmar, M., Lunney, D., Savreux, R., Schwarz, S., Schweikhard, L., Yazidjian, C.: Ramsey Method of Separated Oscillatory Fields for High-Precision Penning Trap Mass Spectrometry. Phys. Rev. Lett. 98(16), 162501 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Eliseev, S., Blaum, K., Block, M., Droese, C., Goncharov, M., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Yu. N., Schweikhard, L.: Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides. Phys. Rev. Lett. 110 (8), 082501 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Eliseev, S., Blaum, K., Block, M., Dörr, A., Droese, C., Eronen, T., Goncharov, M., Höcker, M., Ketter, J., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Yu. N., Schweikhard, L.: A phase-imaging technique for cyclotron-frequency measurements. Appl. Phys. B 114(1-2), 107–128 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Karthein, J.: Precision mass measurements using the Phase-Imaging Ion-Cyclotron-Resonance detection technique - Master thesis - Ruprecht-Karls-Universität Heidelberg (2017)Google Scholar
  21. 21.
    Antcheva, I., Ballintijn, M., Bellenot, B., Biskup, M., Brun, R., Buncic, N., Canal, Ph., Casadei, D., Couet, O., Fine, V., Franco, L., Ganis, G., Gheata, A., Gonzalez Maline, D., Goto, M., Iwaszkiewicz, J., Kreshuk, A., Marcos Segura, D., Maunder, R., Moneta, L., Naumann, A., Offermann, E., Onuchin, V., Panacek, S., Rademakers, F., Russo, P., Tadel, M.: ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun. 180(12), 2499–2512 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Fink, D., Barea, J., Beck, D., Blaum, K., Böhm, Ch., Borgmann, Ch., Breitenfeldt, M., Herfurth, F., Herlert, A., Kotila, J., Kowalska, M., Kreim, S., Lunney, D., Naimi, S., Rosenbusch, M., Schwarz, S., Schweikhard, L., Šimkovic, F., Stanja, J., Zuber, K.: Q Value and Half-Lives for the Double- β -Decay Nuclide Pd 110. Phys. Rev. Lett. 108(6), 062502 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, M., Audi, G., Kondev, F.G., Huang, W.J., Naimi, S., Xu, X.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41(3), 030003 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Sturm, S., Köhler, F., Zatorski, J., Wagner, A., Harman, Z., Werth, G., Quint, W., Keitel, C.H., Blaum, K.: High-precision measurement of the atomic mass of the electron. Nature 506(7489), 467–470 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Kellerbauer, A., Blaum, K., Bollen, G., Herfurth, F., Kluge, H.-J., Kuckein, M., Sauvan, E., Scheidenberger, C., Schweikhard, L.: From direct to absolute mass measurements: A study of the accuracy of ISOLTRAP. Europ. Phys. J. D - Atom., Mol. Opt. Phys. 22(1), 53–64 (2003)ADSGoogle Scholar
  26. 26.
    Welker, A., Filianin, P., Althubiti, N.A.S., Atanasov, D., Blaum, K., Cocolios, T.E., Eliseev, S., Herfurth, F., Kreim, S., Lunney, D., Manea, V., Neidherr, D., Novikov, Yu., Rosenbusch, M., Schweikhard, L., Wienholtz, F., Wolf, R.N., Zuber, K.: Precision electron-capture energy in 202 Pb and its relevance for neutrino mass determination. Eur. Phys. J. A 53, 153 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Cardona, M., Ley, L. (eds.): Photoemission in Solids I, volume 26 of Topics in Applied Physics. Springer, Berlin (1978)Google Scholar
  28. 28.
    NIST X-ray Photoelectron Spectroscopy (XPS) Database, Version 3.5.Google Scholar
  29. 29.
    Nesterenko, D.A., Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dörr, A., Droese, C., Filianin, P.E., Goncharov, M., Minaya Ramirez, E., Novikov, Yu. N., Schweikhard, L., Simon, V.V.: Direct determination of the atomic mass difference of Re 187 and Os 187 for neutrino physics and cosmochronology. Phys. Rev. C 90(4), 042501 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Eliseev, S., Althubiti, N., Ascher, P., Atanasov, D., Blaum, K., Böhm, Ch., Borgmann, Ch., Breitenfeldt, M., Cakirli, RB., Cocolios, T.E., Eronen, T., Filianin, P., George, S., Goncharov, M., Herfurth, F., Herlert, A., Kisler, D., Kowalska, M., Kreim, S., Litvinov, Yu.A., Lunney, D., Manea, V., Minaya Ramirez, E., Naimi, S., Neidherr, D., Novikov, Yu., Rosenbusch, M., De Roubin, A., Schweikhard, L., Wienholtz, F., Welker, A., Wolf, R.N., Zuber, K.: Proposal to the ISOLDE and Neutron Time-of-Flight Committee: Search for β-transitions with the lowest decay energy for a determination of the neutrino mass. Technical report, CERN (2014)Google Scholar
  31. 31.
    Karthein, J., Atanasov, D., Blaum, K., Eliseev, S., George, S., Herfurth, F., Herlert, A., Lunney, D., Manea, V., Mougeot, M., Neidherr, D., Novikov, Y., Rosenbusch, M., Schweikhard, L., Wienholtz, F., Welker, A., Wolf, R., Zuber, K.: Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee. Technical report, CERN (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Karthein
    • 1
    • 2
    Email author
  • D. Atanasov
    • 3
    • 4
  • K. Blaum
    • 2
  • S. Eliseev
    • 2
  • P. Filianin
    • 2
  • D. Lunney
    • 5
  • V. Manea
    • 1
    • 4
  • M. Mougeot
    • 5
    • 6
  • D. Neidherr
    • 7
  • Y. Novikov
    • 8
    • 9
  • L. Schweikhard
    • 10
  • A. Welker
    • 1
    • 3
  • F. Wienholtz
    • 1
    • 10
  • K. Zuber
    • 3
  1. 1.CERNGenèveSwitzerland
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.Technische Universität DresdenDresdenGermany
  4. 4.KU Leuven, Instituut voor Kern- & StralingsfysicaLeuvenBelgium
  5. 5.CSNSM-IN2P3-CNRSUniversité Paris-SudOrsayFrance
  6. 6.Max-Planck-Institut für KernphysikHeidelbergGermany
  7. 7.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  8. 8.Department of PhysicsSt Petersburg State UniversitySt PetersburgRussia
  9. 9.Petersburg Nuclear Physics InstituteSt PetersburgRussia
  10. 10.Physikalisches InstitutUniversität GreifswaldGreifswaldGermany

Personalised recommendations