Advertisement

Hyperfine Interactions

, 240:38 | Cite as

Stopped, bunched beams for the TwinSol facility

  • A. A. ValverdeEmail author
  • M. Brodeur
  • D. P. Burdette
  • J. A. Clark
  • J. W. Klimes
  • D. Lascar
  • P. D. O’Malley
  • R. Ringle
  • G. Savard
  • V. Varentsov
Article
  • 6 Downloads
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Abstract

Tests of the unitarity of the Cabbibo-Kobayashi-Masakawa (CKM) matrix offer an important avenue for constraining the Standard Model of the electroweak interaction. Several methods are currently used to determine Vud, the largest element in the top-row normalization test. One such method is through the study of superallowed T = 1/2 mixed mirror transitions, which offers a complementary method to the current most-precise value that is determined from superallowed pure Fermi 0+ → 0+ transitions. The precision currently achievable by this method is currently limited by the very low number of transitions for which the Fermi-to-Gamow-Teller mixing ratio ρ has been measured. St. Benedict, the Superallowed Transition Beta-Neutrino Decay-Ion-Coincidence Trap, is currently under development at the University of Notre Dame’s Nuclear Science Laboratory, and intends to determine ρ for a range of new isotopes through measurements of the β-neutrino asymmetry parameter aβν using a linear Paul trap. In order to trap these ions, the fast, continuous secondary beam separated by the TwinSol twin solenoid separator must be thermalized and bunched. The system through which this will be done will feature a large-volume gas cell in which the ions will be thermalized, a double-RF-funnel-based ion guide system for the extraction of the ions, and a radiofrequency quadrupole (RFQ) to provide cooled ion bunches for capture in the Paul trap.

Keywords

Fundamental symmetries Ion trapping Mirror transitions Radioactive ion beams RFQ Beam cooling 

Notes

Acknowledgements

This work was conducted with the support of the University of Notre Dame; the National Science Foundation under Grants No. PHY-1725711 and PHY-1713857; and of the Department of Energy, Office of Science, Office of Nuclear Physics under contract No. DE-AC02-06CH11357.

References

  1. 1.
    Severijns, N., Naviliat-Cuncic, O.: Ann. Rev. Nucl. Part. Sci. 61(1), 23 (2011).  https://doi.org/10.1146/annurev-nucl-102010-130410 ADSCrossRefGoogle Scholar
  2. 2.
    Hardy, J.C., Towner, I.S.: Ann. Phys. (Berl.) 525(7), 443 (2013).  https://doi.org/10.1002/andp.201300004 ADSCrossRefGoogle Scholar
  3. 3.
    Naviliat-Cuncic, O., Severijns, N.: Phys. Rev. Lett. 102, 142302 (2009).  https://doi.org/10.1103/PhysRevLett.102.142302 ADSCrossRefGoogle Scholar
  4. 4.
    Calaprice, F.P., Freedman, S.J., Mead, W.C., Vantine, H.C.: Phys. Rev. Lett. 35, 1566 (1975).  https://doi.org/10.1103/PhysRevLett.35.1566 ADSCrossRefGoogle Scholar
  5. 5.
    Vetter, P.A., Abo-Shaeer, J.R., Freedman, S.J., Maruyama, R.: Phys. Rev. C 77, 035502 (2008).  https://doi.org/10.1103/PhysRevC.77.035502 ADSCrossRefGoogle Scholar
  6. 6.
    Masson, G.S., Quin, P.A.: Phys. Rev. C 42, 1110 (1990).  https://doi.org/10.1103/PhysRevC.42.1110 ADSCrossRefGoogle Scholar
  7. 7.
    Garnett, J.D., Commins, E.D., Lesko, K.T., Norman, E.B.: Phys. Rev. Lett. 60, 499 (1988).  https://doi.org/10.1103/PhysRevLett.60.499 ADSCrossRefGoogle Scholar
  8. 8.
    Converse, A., Allet, M., Haeberli, W., Hajdas, W., Lang, J., Liechti, J., Lüscher, H., Miller, M., Müller, R., Naviliat-Cuncic, O., Quin, P.: J. Sromicki, Phys. Lett. B 304(1), 60 (1993).  https://doi.org/10.1016/0370-2693(93)91400-H. http://www.sciencedirect.com/science/article/pii/037026939391400H ADSCrossRefGoogle Scholar
  9. 9.
    Melconian, D., Behr, J., Ashery, D., Aviv, O., Bricault, P., Dombsky, M., Fostner, S., Gorelov, A., Gu, S., Hanemaayer, V., Jackson, K., Pearson, M., Vollrath, I.: Phys. Lett. B 649(5–6), 370 (2007).  https://doi.org/10.1016/j.physletb.2007.04.047. http://www.sciencedirect.com/science/article/pii/S0370269307005205 ADSCrossRefGoogle Scholar
  10. 10.
    Fenker, B., Gorelov, A., Melconian, D., Behr, J.A., Anholm, M., Ashery, D., Behling, R.S., Cohen, I., Craiciu, I., Gwinner, G., McNeil, J., Mehlman, M., Olchanski, K., Shidling, P.D., Smale, S., Warner, C.L.: Phys. Rev. Lett. 120, 062502 (2018).  https://doi.org/10.1103/PhysRevLett.120.062502 ADSCrossRefGoogle Scholar
  11. 11.
    Becchetti, F., Kolata, J.: Nucl. Instrum. Meth. Phys. Res. B 376(Supplement C), 397 (2016).  https://doi.org/10.1016/j.nimb.2015.11.029. http://www.sciencedirect.com/science/article/pii/S0168583X15012227. Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, MI, U.S.A., 11-15 May 2015ADSCrossRefGoogle Scholar
  12. 12.
    Valverde, A.A., Brodeur, M., Ahn, T., Allen, J., Bardayan, D.W., Becchetti, F.D., Blankstein, D., Brown, G., Burdette, D.P., Frentz, B., Gilardy, G., Hall, M.R., King, S., Kolata, J.J., Long, J., Macon, K.T., Nelson, A., O’Malley, P.D., Skulski, M., Strauss, S.Y., Vande Kolk, B.: Phys. Rev. C 97, 035503 (2018).  https://doi.org/10.1103/PhysRevC.97.035503 ADSCrossRefGoogle Scholar
  13. 13.
    Brodeur, M., Nicoloff, C., Ahn, T., Allen, J., Bardayan, D.W., Becchetti, F.D., Gupta, Y.K., Hall, M.R., Hall, O., Hu, J., Kelly, J.M., Kolata, J.J., Long, J., O’Malley, P., Schultz, B.E.: Phys. Rev. C 93, 025503 (2016).  https://doi.org/10.1103/PhysRevC.93.025503 ADSCrossRefGoogle Scholar
  14. 14.
    Long, J., Ahn, T., Allen, J., Bardayan, D.W., Becchetti, F.D., Blankstein, D., Brodeur, M., Burdette, D., Frentz, B., Hall, M.R., Kelly, J.M., Kolata, J.J., O’Malley, P.D., Schultz, B.E., Strauss, S.Y., Valverde, A.A.: Phys. Rev. C 96, 015502 (2017).  https://doi.org/10.1103/PhysRevC.96.015502 ADSCrossRefGoogle Scholar
  15. 15.
    Eibach, M., Bollen, G., Brodeur, M., Cooper, K., Gulyuz, K., Izzo, C., Morrissey, D.J., Redshaw, M., Ringle, R., Sandler, R., Schwarz, S., Sumithrarachchi, C.S., Valverde, A.A., Villari, A.C.C.: Phys. Rev. C 92, 045502 (2015).  https://doi.org/10.1103/PhysRevC.92.045502 ADSCrossRefGoogle Scholar
  16. 16.
    Hardy, J.C., Towner, I.S.: Phys. Rev. C 91, 025501 (2015).  https://doi.org/10.1103/PhysRevC.91.025501 ADSCrossRefGoogle Scholar
  17. 17.
    Brodeur, M., Kelly, J., Long, J., Nicoloff, C., Schultz, B.: Nucl. Instrum. Meth. Phys. Res. B 376, 281 (2016).  https://doi.org/10.1016/j.nimb.2015.12.038. http://www.sciencedirect.com/science/article/pii/S0168583X15012847. Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, MI, U.S.A., 11-15 May 2015ADSCrossRefGoogle Scholar
  18. 18.
    Morrissey, D., Bollen, G., Facina, M., Schwarz, S.: Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms 266(21), 4822 (2008).  https://doi.org/10.1016/j.nimb.2008.07.018. http://www.sciencedirect.com/science/article/pii/S0168583X08009105 ADSCrossRefGoogle Scholar
  19. 19.
    Wada, M., Ishida, Y., Nakamura, T., Yamazaki, Y., Kambara, T., Ohyama, H., Kanai, Y., Kojima, T.M., Nakai, Y., Ohshima, N., Yoshida, A., Kubo, T., Matsuo, Y., Fukuyama, Y., Okada, K., Sonoda, T., Ohtani, S., Noda, K., Kawakami, H., Katayama, I.: Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms 204, 570 (2003).  https://doi.org/10.1016/S0168-583X(02)02151-1. http://www.sciencedirect.com/science/article/pii/S0168583X02021511. 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their ApplicationsADSCrossRefGoogle Scholar
  20. 20.
    Savard, G., Clark, J., Boudreau, C., Buchinger, F., Crawford, J., Geissel, H., Greene, J., Gulick, S., Heinz, A., Lee, J., Levand, A., Maier, M., Münzenberg, G., Scheidenberger, C., Seweryniak, D., Sharma, K., Sprouse, G., Vaz, J., Wang, J., Zabransky, B., Zhou, Z.: Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms 204, 582 (2003).  https://doi.org/10.1016/S0168-583X(02)02134-1. http://www.sciencedirect.com/science/article/pii/S0168583X02021341. 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their ApplicationsADSCrossRefGoogle Scholar
  21. 21.
    Eliseev, S., Block, M., Dworschak, M., Herfurth, F., Kluge, H.J., Martin, A., Rauth, C., Vorobjev, G.: Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms 266 (19), 4475 (2008).  https://doi.org/10.1016/j.nimb.2008.05.055. http://www.sciencedirect.com/science/article/pii/S0168583X08007593. Proceedings of the XVth International Conference on Electromagnetic Isotope Separators and Techniques Related to their ApplicationsADSCrossRefGoogle Scholar
  22. 22.
    Ranjan, M., Purushothaman, S., Dickel, T., Geissel, H., Plass, W.R., Schäfer, D., Scheidenberger, C., de Walle, J.V., Weick, H., Dendooven, P.: EPL (Europhys. Lett.) 96(5), 52001 (2011). http://stacks.iop.org/0295-5075/96/i=5/a=52001 ADSCrossRefGoogle Scholar
  23. 23.
    Fallis, J., Clark, J.A., Sharma, K.S., Savard, G., Buchinger, F., Caldwell, S., Chaudhuri, A., Crawford, J.E., Deibel, C.M., Gulick, S., Hecht, A.A., Lascar, D., Lee, J.K.P., Levand, A.F., Li, G., Lundgren, B.F., Parikh, A., Russell, S., Scholte-van de Vorst, M., Scielzo, N.D., Segel, R.E., Sharma, H., Sinha, S., Sternberg, M.G., Sun, T., Tanihata, I., Van Schelt, J., Wang, J.C., Wang, Y., Wrede, C., Zhou, Z.: Phys. Rev. C 84, 045807 (2011).  https://doi.org/10.1103/PhysRevC.84.045807 ADSCrossRefGoogle Scholar
  24. 24.
    Van Schelt, J., Lascar, D., Savard, G., Clark, J.A., Caldwell, S., Chaudhuri, A., Fallis, J., Greene, J.P., Levand, A.F., Li, G., Sharma, K.S., Sternberg, M.G., Sun, T., Zabransky, B.J.: Phys. Rev. C 85, 045805 (2012).  https://doi.org/10.1103/PhysRevC.85.045805 ADSCrossRefGoogle Scholar
  25. 25.
    Li, G., Segel, R., Scielzo, N.D., Bertone, P.F., Buchinger, F., Caldwell, S., Chaudhuri, A., Clark, J.A., Crawford, J.E., Deibel, C.M., Fallis, J., Gulick, S., Gwinner, G., Lascar, D., Levand, A.F., Pedretti, M., Savard, G., Sharma, K.S., Sternberg, M.G., Sun, T., Van Schelt, J., Yee, R.M., Zabransky, B.J.: Phys. Rev. Lett. 110, 092502 (2013).  https://doi.org/10.1103/PhysRevLett.110.092502 ADSCrossRefGoogle Scholar
  26. 26.
    Sternberg, M.G., Segel, R., Scielzo, N.D., Savard, G., Clark, J.A., Bertone, P.F., Buchinger, F., Burkey, M., Caldwell, S., Chaudhuri, A., Crawford, J.E., Deibel, C.M., Greene, J., Gulick, S., Lascar, D., Levand, A.F., Li, G., Pérez Galván, A., Sharma, K.S., Van Schelt, J., Yee, R.M., Zabransky, B.J.: Phys. Rev. Lett. 115, 182501 (2015).  https://doi.org/10.1103/PhysRevLett.115.182501 ADSCrossRefGoogle Scholar
  27. 27.
    Yee, R.M., Scielzo, N.D., Bertone, P.F., Buchinger, F., Caldwell, S., Clark, J.A., Deibel, C.M., Fallis, J., Greene, J.P., Gulick, S., Lascar, D., Levand, A.F., Li, G., Norman, E.B., Pedretti, M., Savard, G., Segel, R.E., Sharma, K.S., Sternberg, M.G., Van Schelt, J., Zabransky, B.J.: Phys. Rev. Lett. 110, 092501 (2013).  https://doi.org/10.1103/PhysRevLett.110.092501 ADSCrossRefGoogle Scholar
  28. 28.
    Ziegler, J.F., Ziegler, M., Biersack, J.: Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms 268(11), 1818 (2010).  https://doi.org/10.1016/j.nimb.2010.02.091. http://www.sciencedirect.com/science/article/pii/S0168583X10001862. 19th International Conference on Ion Beam AnalysisADSCrossRefGoogle Scholar
  29. 29.
    Varentsov, V.: Proposal of a new laser ablation ion source for laspec and mats testing.  https://doi.org/10.13140/RG.2.2.10904.39686 (2016)
  30. 30.
    Ratajczyk, T., Varentsov, V., Nörtershäuser, W.: Status of a New Laser Ablation Ion Beam Source for Laspec. Technical report, GSI-FAIR.  https://doi.org/10.15120/GR-2018-1 (2018)
  31. 31.
    Dahl, D.A.: Int. J. Mass Spectrom. 200 (1), 3 (2000).  https://doi.org/10.1016/S1387-3806(00)00305-5. http://www.sciencedirect.com/science/article/pii/S1387380600003055. Volume 200: The state of the field as we move into a new milleniumCrossRefGoogle Scholar
  32. 32.
    Herfurth, F., Dilling, J., Kellerbauer, A., Bollen, G., Henry, S., Kluge, H.J., Lamour, E., Lunney, D., Moore, R., Scheidenberger, C., Schwarz, S., Sikler, G., Szerypo, J.: Nucl. Instr. Meth. Phys. Res. A 469(2), 254 (2001).  https://doi.org/10.1016/S0168-9002(01)00168-1. http://www.sciencedirect.com/science/article/pii/S0168900201001681 ADSCrossRefGoogle Scholar
  33. 33.
    Schwarz, S., Bollen, G., Ringle, R., Savory, J., Schury, P.: Nucl. Instr. Meth. Phys. Res. A 816, 131 (2016).  https://doi.org/10.1016/j.nima.2016.01.078. http://www.sciencedirect.com/science/article/pii/S0168900216001194 ADSCrossRefGoogle Scholar
  34. 34.
    Savard, G., Levand, A., Zabransky, B.: Nucl. Instr. Meth. Phys. Res. B 376, 246 (2016).  https://doi.org/10.1016/j.nimb.2016.02.050. http://www.sciencedirect.com/science/article/pii/S0168583X16001804. Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, MI, U.S.A., 11-15 May 2015ADSCrossRefGoogle Scholar
  35. 35.
    Smith, M., Blomeley, L., Delheij, P., Dilling, J.: In: Dilling, J., Comyn, M., Thompson, J., Gwinner, G. (eds.) TCP 2006, pp 327–336. Springer, Berlin (2007)Google Scholar
  36. 36.
    Nieminen, A., Huikari, J., Jokinen, A., Äystö, J., Campbell, P., Cochrane, E.: Nucl. Instrum. Meth. Phys. Res. A 469 (2), 244 (2001).  https://doi.org/10.1016/S0168-9002(00)00750-6. http://www.sciencedirect.com/science/article/pii/S0168900200007506 ADSCrossRefGoogle Scholar
  37. 37.
    Marx, G., Ackermann, D., Dilling, J., Hessberger, F., Hoffmann, S., Kluge, H.J., Mann, R., Münzenberg, G., Qamhieh, Z., Quint, W., Rodriguez, D., Schädel, M., Schönfelder, J., Sikler, G., Toader, C., Weber, C., Engels, O., Habs, D., Thirolf, P., Backe, H., Dretzke, A., Lauth, W., Ludolphs, W., Sewtz, M.: Hyperfine Interactions 132(1), 459 (2001).  https://doi.org/10.1023/A:1011904231676 ADSCrossRefGoogle Scholar
  38. 38.
    Brunner, T., Smith, M., Brodeur, M., Ettenauer, S., Gallant, A., Simon, V., Chaudhuri, A., Lapierre, A., Mané, E., Ringle, R., Simon, M., Vaz, J., Delheij, P., Good, M., Pearson, M., Dilling, J.: Nucl. Instrum. Meth. Phys. Res. A 676, 32 (2012).  https://doi.org/10.1016/j.nima.2012.02.004. http://www.sciencedirect.com/science/article/pii/S0168900212001398 ADSCrossRefGoogle Scholar
  39. 39.
    Lunney, D., Bachelet, C., Guénaut, C., Henry, S., Sewtz, M.: Nucl. Instrum. Meth. Phys. Res. A 598(2), 379 (2009).  https://doi.org/10.1016/j.nima.2008.09.050. http://www.sciencedirect.com/science/article/pii/S0168900208014459 ADSCrossRefGoogle Scholar
  40. 40.
    Beyer, T., Blaum, K., Block, M., Düllmann, C.E., Eberhardt, K., Eibach, M., Frömmgen, N., Geppert, C., Gorges, C., Grund, J., Hammen, M., Kaufmann, S., Krieger, A., Nagy, S., Nörterhäuser, W., Renisch, D., Smorra, C., Will, E.: Appl. Phys. B 114(1), 129 (2014).  https://doi.org/10.1007/s00340-013-5719-4 ADSCrossRefGoogle Scholar
  41. 41.
    Lapierre, A., Bollen, G., Crisp, D., Krause, S.W., Linhardt, L.E., Lund, K., Nash, S., Rencsok, R., Ringle, R., Schwarz, S., Steiner, M., Sumithrarachchi, C., Summers, T., Villari, A.C.C., Williams, S.J., Zhao, Q.: Phys. Rev. Accel. Beams 21, 053401 (2018).  https://doi.org/10.1103/PhysRevAccelBeams.21.053401 ADSCrossRefGoogle Scholar
  42. 42.
    Barquest, B.R.: An Advanced Ion Guide for Beam Cooling and Bunching for Collinear Laser Spectroscopy of Rare Isotopes. Ph.D. thesis, Michigan State University (2014)Google Scholar
  43. 43.
    Barquest, B., Bollen, G., Mantica, P., Minamisono, K., Ringle, R., Schwarz, S., Sumithrarachchi, C.: Nucl. Instrum. Methods Phys. Res., Sect. A 866, 18 (2017).  https://doi.org/10.1016/j.nima.2017.05.036. http://www.sciencedirect.com/science/article/pii/S0168900217305892 ADSCrossRefGoogle Scholar
  44. 44.
    Burdette, D.P, Brodeur, M., O’Malley, P.D, Valverde, A.A.: Hyperfine Interact. This issue (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Physics DivisionArgonne National LaboratoryLemontUSA
  2. 2.Department of PhysicsUniversity of Notre DameNotre DameUSA
  3. 3.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
  4. 4.Center for Fundamental PhysicsNorthwestern UniversityEvanstonUSA
  5. 5.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  6. 6.Department of PhysicsUniversity of ChicagoChicagoUSA
  7. 7.Facility for Antiproton and Ion Research in Europe (FAIR GmbH)DarmstadtGermany
  8. 8.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations