Advertisement

Hyperfine Interactions

, 240:29 | Cite as

A new concept for searching for time-reversal symmetry violation using Pa-229 ions trapped in optical crystals

  • Jaideep Taggart SinghEmail author
Article
  • 15 Downloads
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Abstract

Certain pear-shaped nuclei are expected to have enhanced sensitivity to time-reversal and parity-violating interactions originating within the nuclear medium. In particular, Protactinium-229 is thought to be about 100,000 times more sensitive than Mercury-199 which currently sets some of the most stringent limits for these types of interactions. Several challenges would first have to be addressed in order to take advantage of this discovery potential. First, there is not currently a significant source of Pa-229 (1.5 day half-life); however, there are plans to harvest Pa-229 at the Facility for Rare Isotope Beams at Michigan State University. Second, the spin-5/2 nucleus of Pa-229 limits its coherence time while also making it sensitive to systematic effects related to local electric field gradients. On the other hand, this also give Pa-229 an additional source of signal in the form of a magnetic quadrupole moment (MQM) which violates the same symmetries as an EDM but is not observable in spin-1/2 systems. Third, in order to compensate for the small atom numbers and short coherence times, the Pa-229 atoms would have to be probed with exceptionally large electric and magnetic fields that may be possible if Pa-229 ions are embedded inside an optical crystal. We will describe some aspects of this concept using the stable Praseodymium-141 isotope as a surrogate which has the same nuclear spin and similar atomic structure of Pa-229.

Keywords

Time-reversal violation Octuple deformation Electric dipole moments 

Notes

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC0019015.

References

  1. 1.
    Sakharov, A.D.: . Soviet Physics Uspekhi 34, 392 (1991).  https://doi.org/10.1070/PU1991v034n05ABEH002497 ADSCrossRefGoogle Scholar
  2. 2.
    Christenson, J.H., Cronin, J.W., Fitch, V.L., Turlay, R.: . Phys. Rev. Lett. 13, 138 (1964).  https://doi.org/10.1103/PhysRevLett.13.138 ADSCrossRefGoogle Scholar
  3. 3.
    Aubert, B., et al.: . Phys. Rev. Lett. 89, 201802 (2002).  https://doi.org/10.1103/PhysRevLett.89.201802 ADSCrossRefGoogle Scholar
  4. 4.
    Abe, K., et al.: . Phys. Rev. Lett. 87, 091802 (2001).  https://doi.org/10.1103/PhysRevLett.87.091802 ADSCrossRefGoogle Scholar
  5. 5.
    Huet, P., Sather, E.: . Phys. Rev. D 51, 379 (1995).  https://doi.org/10.1103/PhysRevD.51.379 ADSCrossRefGoogle Scholar
  6. 6.
    Pospelov, M., Ritz, A.: . Ann. Phys. 318(1), 119 (2005).  https://doi.org/10.1016/j.aop.2005.04.002. Special IssueADSCrossRefGoogle Scholar
  7. 7.
    Patrignani, C., et al.: . Chin. Phys. C40(10), 100001 (2016).  https://doi.org/10.1088/1674-1137/40/10/100001 ADSCrossRefGoogle Scholar
  8. 8.
    Engel, J., Ramsey-Musolf, M.J., van Kolck, U.: . Prog. Part. Nucl. Phys. 71, 21 (2013).  https://doi.org/10.1016/j.ppnp.2013.03.003. Fundamental Symmetries in the Era of the {LHC}ADSCrossRefGoogle Scholar
  9. 9.
    Brod, J., Haisch, U.: . J. Zupan, JHEP 11, 180 (2013).  https://doi.org/10.1007/JHEP11(2013)180 CrossRefGoogle Scholar
  10. 10.
    Chupp, T.E., Fierlinger, P., Ramsey-Musolf, M.J., Singh, J.T.: . Rev. Mod. Phys. 91, 015001 (2019).  https://doi.org/10.1103/RevModPhys.91.015001 ADSCrossRefGoogle Scholar
  11. 11.
    Chupp, T., Ramsey-Musolf, M.: . Phys. Rev. C 91, 035502 (2015).  https://doi.org/10.1103/PhysRevC.91.035502 ADSCrossRefGoogle Scholar
  12. 12.
    Fleig, T., Jung, M.: . J. High Energy Phys. 2018(7), 12 (2018)CrossRefGoogle Scholar
  13. 13.
    Pendlebury, J.M., et al.: . Phys. Rev. D 92, 092003 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Regan, B.C., Commins, E.D., Schmidt, C.J., DeMille, D.: . Phys. Rev. Lett. 88, 071805 (2002).  https://doi.org/10.1103/PhysRevLett.88.071805 ADSCrossRefGoogle Scholar
  15. 15.
    Hudson, J.J., Kara, D.M., Smallman, I.J., Sauer, B.E., Tarbutt, M.R., Hinds, E.A.: . Nature 473, 493 (2011).  https://doi.org/10.1038/nature10104 ADSCrossRefGoogle Scholar
  16. 16.
    Baron, J., et al.: . Science 343(6168), 269 (2014).  https://doi.org/10.1126/science.1248213 ADSCrossRefGoogle Scholar
  17. 17.
    Cairncross, W.B., Gresh, D.N., Grau, M., Cossel, K.C., Roussy, T.S., Ni, Y., Zhou, Y., Ye, J., Cornell, E.A.: . Phys. Rev. Lett. 119, 153001 (2017).  https://doi.org/10.1103/PhysRevLett.119.153001 ADSCrossRefGoogle Scholar
  18. 18.
    Sandars, P.: . Phys. Lett. 22(3), 290 (1966).  https://doi.org/10.1016/0031-9163(66)90618-4 ADSCrossRefGoogle Scholar
  19. 19.
    Ignatovich, V.K.: . Sov. Phys. JETP 29(6), 1084 (1969)ADSGoogle Scholar
  20. 20.
    Graner, B., Chen, Y., Lindahl, E.G., Heckel, B.R.: . Phys. Rev. Lett. 116, 161601 (2016).  https://doi.org/10.1103/PhysRevLett.116.161601 ADSCrossRefGoogle Scholar
  21. 21.
    Rosenberry, M.A., Chupp, T.E.: . Phys. Rev. Lett. 86, 22 (2001).  https://doi.org/10.1103/PhysRevLett.86.22 ADSCrossRefGoogle Scholar
  22. 22.
    Bishof, M., Parker, R.H., Bailey, K.G., Greene, J.P., Holt, R.J., Kalita, M.R., Korsch, W., Lemke, N.D., Lu, Z.T., Mueller, P., O’Connor, T.P., Singh, J.T., Dietrich, M.R.: . Phys. Rev. C 94, 025501 (2016).  https://doi.org/10.1103/PhysRevC.94.025501 ADSCrossRefGoogle Scholar
  23. 23.
    Cho, D., Sangster, K., Hinds, E.A.: . Phys. Rev. A 44, 2783 (1991).  https://doi.org/10.1103/PhysRevA.44.2783 ADSCrossRefGoogle Scholar
  24. 24.
    Schiff, L.I.: . Phys. Rev. 132, 2194 (1963).  https://doi.org/10.1103/PhysRev.132.2194 ADSCrossRefGoogle Scholar
  25. 25.
    Gaffney, L.P., et al.: . Nature 497, 199 (2013).  https://doi.org/10.1038/nature12073 ADSCrossRefGoogle Scholar
  26. 26.
    Ahmad, I., Gindler, J.E., Betts, R.R., Chasman, R.R., Friedman, A.M.: . Phys. Rev. Lett. 49, 1758 (1982).  https://doi.org/10.1103/PhysRevLett.49.1758 ADSCrossRefGoogle Scholar
  27. 27.
    Feinberg, G.: . Trans. N. Y. Acad. Sci. 38(1 Series II), 26 (1977)CrossRefGoogle Scholar
  28. 28.
    Haxton, W.C., Henley, E.M.: . Phys. Rev. Lett. 51, 1937 (1983).  https://doi.org/10.1103/PhysRevLett.51.1937 ADSCrossRefGoogle Scholar
  29. 29.
    Auerbach, N., Flambaum, V.V., Spevak, V.: . Phys. Rev. Lett. 76, 4316 (1996).  https://doi.org/10.1103/PhysRevLett.76.4316 ADSCrossRefGoogle Scholar
  30. 30.
    Spevak, V., Auerbach, N., Flambaum, V.V.: . Phys. Rev. C 56, 1357 (1997).  https://doi.org/10.1103/PhysRevC.56.1357 ADSCrossRefGoogle Scholar
  31. 31.
    Dzuba, V.A., Flambaum, V.V., Ginges, J.S.M., Kozlov, M.G.: . Phys. Rev. A 66, 012111 (2002).  https://doi.org/10.1103/PhysRevA.66.012111 ADSCrossRefGoogle Scholar
  32. 32.
    Ban, S., Dobaczewski, J., Engel, J., Shukla, A.: . Phys. Rev. C 82, 015501 (2010).  https://doi.org/10.1103/PhysRevC.82.015501 ADSCrossRefGoogle Scholar
  33. 33.
    Dobaczewski, J., Engel, J.: . Phys. Rev. Lett. 94, 232502 (2005).  https://doi.org/10.1103/PhysRevLett.94.232502 ADSCrossRefGoogle Scholar
  34. 34.
    Flambaum, V.V.: . Phys. Rev. A 77, 024501 (2008).  https://doi.org/10.1103/PhysRevA.77.024501 ADSCrossRefGoogle Scholar
  35. 35.
    Ahmad, I., Chasman, R.R., Greene, J.P., Kondev, F.G., Zhu, S.: . Phys. Rev. C 92, 024313 (2015).  https://doi.org/10.1103/PhysRevC.92.024313 ADSCrossRefGoogle Scholar
  36. 36.
    Dobaczewski, J., Engel, J., Kortelainen, M., Becker, P.: . Phys. Rev. Lett. 121(23), 232501 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    CARRUTHERS, P., NIETO, M.M.: . Rev. Mod. Phys. 40, 411 (1968).  https://doi.org/10.1103/RevModPhys.40.411 ADSCrossRefGoogle Scholar
  38. 38.
    Vutha, A.C., Horbatsch, M., Hessels, E.A.: . Phys. Rev. A 98(3), 032513 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    Thiel, C., Böttger, T., Cone, R.: . J. Lumin. 131(3), 353 (2011).  https://doi.org/10.1016/j.jlumin.2010.12.015. Selected papers from DPC’10CrossRefGoogle Scholar
  40. 40.
    Fraval, E., Sellars, M.J., Longdell, J.J.: . Phys. Rev. Lett. 95, 030506 (2005).  https://doi.org/10.1103/PhysRevLett.95.030506 ADSCrossRefGoogle Scholar
  41. 41.
    Erickson, L.: . Opt. Commun. 21(1), 147 (1977).  https://doi.org/10.1016/0030-4018(77)90097-9 ADSCrossRefGoogle Scholar
  42. 42.
    Equall, R.W., Cone, R.L., Macfarlane, R.M.: . Phys. Rev. B 52, 3963 (1995).  https://doi.org/10.1103/PhysRevB.52.3963 ADSCrossRefGoogle Scholar
  43. 43.
    Macfarlane, R.M., Burum, D.P., Shelby, R.M.: . Phys. Rev. Lett. 49, 636 (1982).  https://doi.org/10.1103/PhysRevLett.49.636 ADSCrossRefGoogle Scholar
  44. 44.
    Klieber, R., Michalowski, A., Neuhaus, R., Suter, D.: . Phys. Rev. B 68, 054426 (2003).  https://doi.org/10.1103/PhysRevB.68.054426 ADSCrossRefGoogle Scholar
  45. 45.
    Macfarlane, R.M.: . J. Lum. 125(1–2), 156 (2007).  https://doi.org/10.1016/j.jlumin.2006.08.012. Festschrift in Honor of Academician Alexander A. KaplyanskiiADSCrossRefGoogle Scholar
  46. 46.
    Kornher, T., Xia, K., Kolesov, R., Kukharchyk, N., Reuter, R., Siyushev, P., Stöhr, R., Schreck, M., Becker, H.W., Villa, B., Wieck, A.D., Wrachtrup, J.: . Appl. Phys. Lett. 108(5), 053108 (2016).  https://doi.org/10.1063/1.4941403 ADSCrossRefGoogle Scholar
  47. 47.
    Kolesov, R., Xia, K., Reuter, R., Stöhr, R., Zappe, A., Meijer, J., Hemmer, P.R., Wrachtrup, J.: . Nat. Commun. 3, 1029 EP (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Zhong, M., Hedges, M.P., Ahlefeldt, R.L., Bartholomew, J.G., Beavan, S.E., Wittig, S.M., Longdell, J.J., Sellars, M.J.: . Nature 517, 177 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    Sachs, M.: . Ann. Phys. 6(3), 244 (1959)ADSCrossRefGoogle Scholar
  50. 50.
    Sachs, M., Schwebel, S.L.: . Ann. Phys. 8(4), 475 (1959)ADSCrossRefGoogle Scholar
  51. 51.
    Browne, M.E.: . Phys. Rev. 121, 1699 (1961).  https://doi.org/10.1103/PhysRev.121.1699 ADSCrossRefGoogle Scholar
  52. 52.
    Royce, E.B., Bloembergen, N.: . Phys. Rev. 131, 1912 (1963).  https://doi.org/10.1103/PhysRev.131.1912 ADSCrossRefGoogle Scholar
  53. 53.
    Kaiser, W., Sugano, S., Wood, D.L.: . Phys. Rev. Lett. 6, 605 (1961).  https://doi.org/10.1103/PhysRevLett.6.605 ADSCrossRefGoogle Scholar
  54. 54.
    Kiel, A.: . Phys. Rev. 148(1), 247 (1966)ADSCrossRefGoogle Scholar
  55. 55.
    Lucken, E.A.C.: Nuclear Quadrupole Coupling Constants. Academic Press, London (1969)Google Scholar
  56. 56.
    Mims, W.B.: The Linear Electric Field Effect in Paramagnetic Resonance. Clarendon Press, Oxford (1976)Google Scholar
  57. 57.
    Moore, K.T., van der Laan, G.: . Rev. Mod. Phys. 81, 235 (2009).  https://doi.org/10.1103/RevModPhys.81.235 ADSCrossRefGoogle Scholar
  58. 58.
    Kebarle, P., Tang, L.: . Anal. Chem. 65(22), 972A (1993).  https://doi.org/10.1021/ac00070a001 CrossRefGoogle Scholar
  59. 59.
    Shaffer, S.A., Prior, D.C., Anderson, G.A., Udseth, H.R., Smith, R.D.: . Anal. Chem. 70(19), 4111 (1998).  https://doi.org/10.1021/ac9802170. PMID: 9784749CrossRefGoogle Scholar
  60. 60.
    Ibrahim, Y., Tang, K., Tolmachev, A.V., Shvartsburg, A.A., Smith, R.D.: . J. Am. Soc. Mass Spectrom. 17(9), 1299 (2006).  https://doi.org/10.1016/j.jasms.2006.06.005 CrossRefGoogle Scholar
  61. 61.
    Page, J.S., Tang, K., Kelly, R.T., Smith, R.D.: . Anal. Chem. 80(5), 1800 (2008).  https://doi.org/10.1021/ac702354b. PMID: 18237189CrossRefGoogle Scholar
  62. 62.
    Cox, J.T., Marginean, I., Kelly, R.T., Smith, R.D., Tang, K.: . J. Am. Soc. Mass Spectrom. 25(12), 2028 (2014).  https://doi.org/10.1007/s13361-014-0856-5 ADSCrossRefGoogle Scholar
  63. 63.
    Marginean, I., Page, J.S., Tolmachev, A.V., Tang, K., Smith, R.D.: . Anal. Chem. 82(22), 9344 (2010).  https://doi.org/10.1021/ac1019123. PMID: 21028835CrossRefGoogle Scholar
  64. 64.
    Cox, J.T., Marginean, I., Smith, R.D., Tang, K.: . J. Am. Soc. Mass Spectrom. 26(1), 55 (2015).  https://doi.org/10.1007/s13361-014-0998-5 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Superconducting Cyclotron Laboratory & Michigan State UniversityEast LansingUSA

Personalised recommendations