Hyperfine Interactions

, 240:21 | Cite as

A novel hybrid nanoparticle based on Fe3O4/TMAOH/poly(L-co-D,L lactic acid-co-trimethylene carbonate) prepared through the solvent displacement method

  • Vagner de Oliveira Machado
  • Ângela Leão AndradeEmail author
  • Luis Carlos Duarte Cavalcante
  • José Domingos Fabris
  • Rosana Zacarias Domingues
  • José Domingos Ardisson
  • Luís E. Fernandez-Outon
  • Carmen Pizarro
  • Carlos Nelson Elias
Part of the following topical collections:
  1. Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18-23 November 2018, Santiago de Chile, Chile


TMAOH-dispersed nanoparticles of magnetite were first prepared through the reduction–precipitation of ferric chloride with Na2SO3 and NH4OH. The TMAOH-dispersed (Fe3O4) magnetic nanoparticles were then surface-coated with poly(L-co-D,L lactic acid-co-trimethylene carbonate) (PLDLA-co-TMC) to obtain the corresponding hybrid system (Fe3O4/TMAOH/PLDLA-co-TMC). Samples of so prepared material were analyzed by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), magnetization measurements up to 2.5 T, and Mössbauer spectroscopy. Results indicate that this magnetic iron oxide soon after the synthesis is structurally close enough to a typically pure stoichiometric magnetite. FTIR data support clears evidences confirming the efficiency of the solvent displacement method to assure coating the TMAOH-dispersed (Fe3O4) magnetic nanoparticles with the terpolymer while preserves the main chemical structural characteristic of the nanosized magnetite.


Magnetite Hybrid nanoparticles Biomaterial 



JD Fabris and LCD Cavalcante are indebted to the Brazilian National Council for the Scientific and Technological Development (CNPq), for the financial support under the grants # 304958-2017-4 and # 313431/2017-5, respectively. The Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) granted a DSc studenship to VO Machado at Military Insitute of Engineering (Brazil).


  1. 1.
    Dresco, P.A., Zaitse, V.S., Gambino, R.J., Chu, B.: Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir. 15(6), 1945–1951 (1999). CrossRefGoogle Scholar
  2. 2.
    Tartaj, P., Morales, M.D., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., Serna, C.J.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 36(13), R182–R197 (2003). CrossRefGoogle Scholar
  3. 3.
    Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004). CrossRefGoogle Scholar
  4. 4.
    Crucho, C.I.C., Barros, M.T.: Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater. Sci. Eng. C. 80, 771–784 (2017). CrossRefGoogle Scholar
  5. 5.
    Khalkhali, M., Rostamizadeh, K., Sadighian, S., Khoeini, F., Naghibi, M., Hamidi, M.: The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study. DARU J. Pharm. Sci. 23(45), (2015).
  6. 6.
    Quintanar-Guerrero, D., Allemann, E., Fessi, H., Doelker, E.: Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24(12), 1113–1128 (1998). CrossRefGoogle Scholar
  7. 7.
    Couvreur, P., Barratt, G., Fattal, E., Legrand, P., Vauthier, C.: Nanocapsule technology: a review. Crit. Rev. Ther. Drug Carrier Syst. 19(2), 99–134 (2002). CrossRefGoogle Scholar
  8. 8.
    Andrade, A.L., Fabris, J.D., Ardisson, J.D., Valente, M.A., Ferreira, J.M.F.: Effect of tetramethylammonium hydroxide on nucleation, surface modification and growth of magnetic nanoparticles. J. Nanomater. Article ID 454759. 10 (2012). Google Scholar
  9. 9.
    Motta, A.C., Duek, E.A.R.: Synthesis and characterization of a novel terpolymer based on L-lactide, D,L-lactide and trimethylene carbonate. Mater. Res. 17(3), 619–626 (2014). CrossRefGoogle Scholar
  10. 10.
    Andrade, A.L., Souza, D.M., Pereira, M.C., Fabris, J.D., Domingues, R.Z.: Magnetic properties of nanoparticles obtained by different chemical routes. J. Nanosci. Nanotechnol. 9(3), 2081–2087 (2009). CrossRefGoogle Scholar
  11. 11.
    Barichello, J.M., Morishita, M., Takayama, K., Nagai, T.: Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev. Ind. Pharm. 25(4), 471–476 (1999). CrossRefGoogle Scholar
  12. 12.
    Fessi, H., Puisieux, F., Devissaguet, J.P., Ammoury, N., Benita, S.: Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55(1), R1–R4 (1989). CrossRefGoogle Scholar
  13. 13.
    Mas, B.A., Cattani, S.M.M., Rangel, R.C.C., Ribeiro, G.A., Cruz, N.C., Leite, F.L., Nascente, P.A.P., Duek, E.A.R.: Surface characterization and osteoblast-like cells culture on collagen modified PLDLA scaffolds. Mater. Res. 17(6), 1523–1534 (2014). CrossRefGoogle Scholar
  14. 14.
    Motta, A.C., Duek, E.A.R.: Synthesis and characterization of the copolymer poly(L-co-D,L lactic acid). Polim.: Cienc. Tecnol. 17(2), 123–129 (2007). CrossRefGoogle Scholar
  15. 15.
    Fousteris, E., Tarantili, P.A., Karavas, E., Bikiaris, D.: Poly(vinyl pyrrolidone)-poloxamer-188 solid dispersions prepared by hot melt extrusion. J. Therm. Anal. Calorim. 113(3), 1037–1047 (2013). CrossRefGoogle Scholar
  16. 16.
    Vyas, V., Sancheti, P., Karekar, P., Shah, M., Pore, Y.: Physicochemical characterization of solid dispersion systems of tadalafil with poloxamer 407. Acta Pharma. 59(4), 453–461 (2009). CrossRefGoogle Scholar
  17. 17.
    Saritha, A., Shastri, N.: Preparation, physico chemical characterization of solid dispersions of tenoxicam with poloxamer. J. Pharm. Sci. Technol. 2(9), 308–311 (2010)Google Scholar
  18. 18.
    Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., Deng, X.: Synthesis of Fe3O4 nanoparticles and their magnetic properties. Chin. Mater. Conf. 27, 632–637 (2012). CrossRefGoogle Scholar
  19. 19.
    Komatsu, D., Mistura, D.V., Motta, A., Domingues, J.A., Hausen, M.A., Duek, E.: Development of a membrane of poly (L-co-D,L lactic acid-co-trimethylene carbonate) with aloe vera: an alternative biomaterial designed to improve skin healing. J. Biomater. Appl. 32(3), 311–320 (2017). CrossRefGoogle Scholar
  20. 20.
    Jayakrishnan, P., Ramesan, M.T.: Studies on the effect of magnetite nanoparticles on magnetic, mechanical, thermal, temperature dependent electrical resistivity and DC conductivity modeling of poly (vinyl alcohol-co-acrylic acid)/Fe3O4 nanocomposites. Mater. Chem. Phys. 186, 513–522 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vagner de Oliveira Machado
    • 1
  • Ângela Leão Andrade
    • 2
    Email author
  • Luis Carlos Duarte Cavalcante
    • 3
    • 4
  • José Domingos Fabris
    • 4
    • 5
  • Rosana Zacarias Domingues
    • 4
  • José Domingos Ardisson
    • 6
  • Luís E. Fernandez-Outon
    • 6
  • Carmen Pizarro
    • 7
  • Carlos Nelson Elias
    • 1
  1. 1.Laboratory of BiomaterialsMilitary Institute of Engineering (IME)Rio de JaneiroBrazil
  2. 2.Department of ChemistryFederal University of Ouro Preto (UFOP)Ouro PretoBrazil
  3. 3.Center of Natural SciencesFederal University of Piauí (UFPI)TeresinaBrazil
  4. 4.Department of ChemistryFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  5. 5.Institute of ChemistryFederal University of Uberlândia (UFU)UberlândiaBrazil
  6. 6.Laboratory of Applied PhysicsCenter for the Development of the Nuclear Tecnology (CDTN)Belo HorizonteBrazil
  7. 7.Faculty of Chemistry and BiologyUniversity of SantiagoSantiagoChile

Personalised recommendations