Advertisement

Hyperfine Interactions

, 240:12 | Cite as

Implementation of a platform for the remote access to a transmission Mössbauer spectrometer

  • Álvaro Andrés Velásquez TorresEmail author
Article
  • 13 Downloads
Part of the following topical collections:
  1. Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18–23 November 2018, Santiago de Chile, Chile

Abstract

In this work, we present the development of a platform for the remote access to the Mössbauer spectrometer of the Instrumentation and Spectroscopy Laboratory of Universidad EAFIT of Medellín, Colombia. This platform was developed looking for a proper use of the radioactive source of 57Co(Rh) during recess periods of the staff of the laboratory, reduction of exposure of the users to the ionizing radiation coming from radioactive source, as well as spread Mössbauer spectroscopy between new researchers during their academic formation in materials characterization. The application is executed from the server “Neutrón” of the “Laboratorio para la Innovación y el Aprendizaje” of Universidad EAFIT of Medellín. Through a web application based on the e-learning platform Moodle, the user can access, after registration, to a web site with a series of introductory contents related to Mössbauer spectroscopy, a field with remote connection to the Mössbauer spectrometer and other fields with support materials, among them: suggested papers, video of the experiment through an IP camera, chat with the administrator of the spectrometer and access to the file with the experimental spectra. Details of the design of the platform are presented through the sections of this paper.

Keywords

Mössbauer spectrometer Remote access Moodle e-learning 

Notes

References

  1. 1.
    Grodotzki, J., Ortelt, T.R., Tekkaya, A.E.: Remote and virtual labs for engineering education 4.0. Procedia Manuf. 26, 1349–1360 (2018)CrossRefGoogle Scholar
  2. 2.
    Zamora, R.: Laboratorios Remotos, Actualidad y Tendencias Futuras. Scientia et Technica Año XVII 51, 113–118 (2012)Google Scholar
  3. 3.
    Gröber, S., Vetter, M., Eckert, B., Jörg, H.: Remotely controlled laboratories: aims, examples, and experience. Am. J. Phys. 76, 374 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Khazri, Y., Sabri, A.A., Sabir, B., Toumi, H., Moussetad, M., Fahli, A.: Remote control laboratory experiments in physics using LabVIEW. Int. J. Inf. Sci. Technol. 1(1), 11–16 (2017)Google Scholar
  5. 5.
    Arroyave, M., Velásquez, A.A, Olarte, T., Montoya, J.C.: Laboratorios remotos: diversos escenarios de trabajo. Anuario Electrónico de Estudios en Comunicación Social 4(2), 83–94 (2011)Google Scholar
  6. 6.
    Montoya, J.C., Olarte, T.: Plataforma web para acceso remoto a instrumentación física avanzada. Rev. Univ. EAFIT 46(160), 36–47 (2010)Google Scholar
  7. 7.
    Jiménez, I.P., Martínez, O., Aroca, R.: e-LAB Colombia: Red de Laboratorios Virtuales y Teleoperados de Colombia en la Red Nacional Académica de Tecnología Avanzada (RENATA). Cuarta Conferencia de Directores de Tecnología de Información, TICAL2014 Gestión de las TICs para la Investigación y la Colaboración, Cancún, del 26 al 28 de mayo de 2014. http://documentas.redclara.net/bitstream/10786/765/1/125-22-3-2014-e-LAB%20Colombia%20Red%20de%20Laboratorios%20Virtuales∖%20y%20Teleoperados%20de%20Colombia.pdf. Accessed 10 August 2018
  8. 8.
    Silaev, A.A. Jr., Godovikov, S.K., Postnikov, E.B., Radchenko, V.V., Silaev, A.A. Sr.: Remote access Mössbauer spectrometry. Bull. Russ. Acad. Sci.: Phys. 77(6), 790–794 (2013)CrossRefGoogle Scholar
  9. 9.
    Zhou, Q., Wang, L., Wang, Y., Zhao, H., Zhou, R.: A remote data acquisition and control system for Mössbauer spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 215, 577–580 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Klingelhöfer, G., Bernhardt, B., Foh, J., Bonnes, U., Rodionov, D., De Souza, P.A., Schröder, C.H., Gellert, R., Kane, S., Gütlitch, P., Kankeleit, E.: The miniaturized Mössbauer spectrometer MIMOS II for extraterrestrial and outdoor terrestrial applications: a status report. Hyperfine Interact. 144/145, 371–379 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Universidad EAFIT: Cursos Proyecto 50. http://neutron.eafit.edu.co/moodledllo/course/view.php?id=82. Accessed 12 November 2018
  12. 12.
    Barge, P., Londhe, B.R.: From teaching, learning to assessment: MOODLE experience at B’School in India. Procedia Econ. Finance 11, 857–865 (2014)CrossRefGoogle Scholar
  13. 13.
    Fultz, B.: Mössbauer Spectrometry. Characterization of Materials. Wiley, New York (2011)Google Scholar
  14. 14.
    Vértes, A., Kzakó, N.: Mössbauer spectroscopy and its application to corrosión studies. Electrochim. Acta 34(6), 721–758 (1989)CrossRefGoogle Scholar
  15. 15.
    Gütlitch, P., Bill, E., Trautwein, A. X.: Mössbauer Spectroscopy and Transition Metal Chemistry, p 7. Springer, Heidelberg Dordrecht London-New York (2011)Google Scholar
  16. 16.
    May, L.: An Introduction to Mössbauer Spectroscopy, p 1. Plenum Press, New York-London (1971)CrossRefGoogle Scholar
  17. 17.
    Velásquez, A.A., Trujillo, J.M., Morales, A.L., Tobón, J.E., Reyes, L., Gancedo, J.R.: Design and construction of an autonomous control system for Mössbauer spectroscopy. Hyperfine Interact. 161, 139–145 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    National Instruments: LabVIEW Run-Time Engine 2017-(64-bit)-Windows. http://www.ni.com/download/labview-run-time-engine-2017/6821/en/. Accessed 26 November 2018
  19. 19.
    Vandenberghe, R., De Grave, E., De Bakker, P.M.A.: On the methodology of the analysis of Mössbauer spectra. Hyperfine Interact. 83, 29–49 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo de Electromagnetismo AplicadoUniversidad EAFITMedellínColombia

Personalised recommendations