Advertisement

Hyperfine Interactions

, 240:11 | Cite as

Status of the GBAR experiment at CERN

  • Bruno MansouliéEmail author
  • on behalf of the GBAR Collaboration
Article
  • 8 Downloads
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018

Abstract

The GBAR experiment aims at measuring the free-fall of antihydrogen atoms. It is located at CERN in the AD area and will be connected to the new ELENA low-energy antiproton ring. Installation of the first components has started during the second half of 2017. The status and plans of the experiment will be given in this talk.

Keywords

Anti-hydrogen Gravity 

Notes

References

  1. 1.
    Proposal to measure the Gravitational Behaviour of Antihydrogen at Rest : GBAR CERN-SPSC-2011-029 / SPSC-P-342Google Scholar
  2. 2.
    Smorra, C., et al.: A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Ahmadi, M., et al.: Characterization of the 1S–2S transition in antihydrogen. Nature 557, 71 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Nieto, M.M., Goldman, T.: The arguments against ”antigravity” and the gravitational acceleration of antimatter. Phys. Rep. 205, 221 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Proposal for the AEGIS experiment at the CERN Antiproton Decelerator CERN-SPSC-2007-017 / SPSC-P-334Google Scholar
  6. 6.
    Addendum to the ALPHA Proposal; The ALPHA-g Apparatus CERN-SPSC-2016-031 / SPSC-P-325-ADD-1Google Scholar
  7. 7.
    Extra Low ENergy Antiproton (ELENA) ring and its Transfer Lines: Design Report. CERN-2014-002Google Scholar
  8. 8.
    Liszkay, L., et al.: Linac-based positron source and generation of a high density positronium cloud for the GBAR experiment. J. Phys.: Conf. Ser. 443, 012006 (2013)Google Scholar
  9. 9.
    Clarke, J., van der Werf, D.P., Griffiths, B., Beddows, D.C.S., Charlton, M., Telle, H.H., Watkeys, P.R.: Design and operation of a two-stage positron accumulator. Rev. Sci. Instrum. 77, 063302 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Grandemange, P.: Piégeage et accumulation de positons issus d’un faisceau pulsé produit par un accélérateur pour l’étude de l’interaction gravitationnelle de l’antimatière université Paris Sud - Paris XI (2013)Google Scholar
  11. 11.
    Comini, P., Hervieux, P.-A.: \({\bar {\mathrm {H}}}^{+}\) ion production from collisions between antiprotons and excited positronium: cross sections calculations in the framework of the GBAR experiment. New J. Phys. 15, 095022 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Hilico, L., et al.: Preparing single ultra-cold antihydrogen atoms for free-fall in GBAR. Int. J. Mod. Phys. Conf. Ser. 30, 1460269 (2014)CrossRefGoogle Scholar
  13. 13.
    Heinrich, J.: A Be+ Ion Trap for H2+ Spectroscopy. Sorbonne Université, Faculté des Sciences et Ingénierie (2018)Google Scholar
  14. 14.
    Giomataris, Y., Rebourgeard, P.H., Robert, J.P., Charpak, G.: MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments. Nucl. Instrum. Methods Phys. Res. 376, 29 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Dufour, G., et al.: Quantum reflection of antihydrogen in the GBAR experiment. Int. J. Mod. Phys. Conf. Ser. 30, 1460265 (2014)CrossRefGoogle Scholar
  16. 16.
    Abele, H., Leeb, H.: Gravitation and quantum interference experiments with neutrons. New J. Phys. 14, 055010 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IRFU, CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations