Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns

Abstract

South-western Australia is isolated from other forested regions of Australia by desert and bounded on southern and western sides by the Southern and Indian Oceans, respectively, with Westralunio carteri (Iredale, 1934) as the sole endemic freshwater mussel. Its conservation status is vulnerable. This species has a history of nomenclatural change and its systematic placement and population genetic history are largely unknown. We sampled 46 individuals from 13 sites across W. carteri’s distribution and sequenced two mitochondrial genes (16S rDNA and cytochrome c oxidase subunit I) and one nuclear gene (28S rDNA). The mitochondrial haplotype networks and COI phylogenies revealed three evolutionarily significant units (ESUs): “W. carteri” I including the west coast populations, “W. carteri” II from the south and south-eastern range, and “W. carteri” III only occurring in the south-western tip of Australia. Four species delimitation methods identified two molecular operational taxonomic units supporting two distinct species (“W. carteri” I and “W. carteri” II + III). Phylogeographic patterns revealed herein confirm the historical separation of Western and Southern paleo-basins, also highlighting the isolation of the south-western extremity of the region. This underlines the need for taxonomic revision and will require a re-evaluation of W. carteri’s conservation status.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Araujo, R. D., K.-O. Buckley, R. García-Jiménez Nagel & A. Machordom, 2018. Species boundaries, geographic distribution and evolutionary history of the Western Palaearctic freshwater mussels Unio (Bivalvia: Unionidae). Zoological Journal of the Linnean Society 182: 275–299.

  2. AWRC, 1976. Review of Australia’s Water Resources 1975. Canberra, Australian Water Resources Council (AWRC), Department of Natural Resources.

  3. Baker, A. M., C. Bartlett, S. E. Bunn, K. Goudkamp, F. Sheldon & J. M. Hughes, 2003. Cryptic species and morphological plasticity in long-lived bivalves (Unionoida: Hyriidae) from inland Australia. Molecular Ecology 12: 2707–2717.

  4. Balla, S. A. & K. F. Walker, 1991. Shape variation in the Australian freshwater mussel Alathyria jacksoni Iredale (Bivalvia, Hyriidae). Hydrobiologia 220: 89–98.

  5. Beard, J. S., 1999. Evolution of the river systems of the south-west drainage division, Western Australia. Journal of the Royal Society of Western Australia 82: 147–164.

  6. Benson, J. A., P. G. Close, B. A. Stewart & A. J. Lymbery, 2017. Upstream recolonization by freshwater mussels (Unionoida: Hyriidae) following installation of a fishway. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 512–517.

  7. Benson, J. A., P. G. Close, B. A. Stewart & A. J. Lymbery, 2019. Freshwater tributaries provide refuge and recolonization opportunities for mussels following salinity reversal. Science of the Total Environment 683: 231–239.

  8. Berg, D. J., A. D. Christian & S. I. Guttman, 2007. Population genetic structure of three freshwater mussel (Unionidae) species within a small stream system: significant variation at local spatial scales. Freshwater Biology 52: 1427–1439.

  9. Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, et al., 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.

  10. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.

  11. de Queiroz, K., 2005. A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences 56(Suppl. 1): 196–215.

  12. de Queiroz, K., 2008. Species concepts and species delimitation. Systematic Biology 56: 879–886.

  13. Dellicour, S. & J. Flot, 2018. The hitchhiker’s guide to single-locus species delimitation. Molecular Ecology Resources 2018: 1–13.

  14. Drummond, A. J., S. Y. Ho, M. J. Phillips & A. Rambaut, 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: 699.

  15. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

  16. Ferreira-Rodriguez, N., Y. B. Akiyama, O. V. Aksenova, R. Araujo, C. M. Barnhart, Y. V. Bespalaya, A. E. Bogan, I. N. Bolotov, P. B. Budha, C. Clavijo, S. J. Clearwater, G. Darrifran, V. T. Do, K. Douda, E. Froufe, C. Gumpinger, L. Henrikson, C. L. Humphrey, N. A. Johnson, O. Klishko, M. W. Klunzinger, S. Kovitvadhi, U. Kovitvadhi, J. Lajtner, M. Lopes-Lima, E. A. Moorkens, S. Nagayama, K. Nagel, M. Nakano, J. N. Negishi, P. Ondina, P. Oulasvirta, V. Prié, N. Riccardi, M. Rudzīte, F. Sheldon, R. Sousa, D. L. Strayer, M. Takeuchi, J. Taskinen, A. Teixeira, J. S. Tiemann, M. Urbańska, S. Varandas, M. V. Vinarski, B. J. Wicklow, T. Zając & C. C. Vaughn, 2019. Research priorities for freshwater mussel conservation assessment. Biological Conservation 231: 77–87.

  17. Fonseca, M. M., M. Lopes-Lima, M. S. Eackles, T. L. King & E. Froufe, 2016. The female and male mitochondrial genomes of Unio delphinus and the phylogeny of freshwater mussels (Bivalvia: Unionida). Mitochondrial DNA Part B Resources 1: 954–957.

  18. Froufe, E., C. Sobral, A. Teiseira, R. Sousa, S. Varandas, D. C. Aldridge & M. Lopes-Lima, 2014. Genetic diversity of the pan-European freshwater mussel Anodonta anatina (Bivalvia: Unionoida) based on CO1: new phylogenetic insights and implications for conservation. Aquatic Conservation Marine and Freshwater Ecosystems 24: 561–574.

  19. Froufe, E., V. Prié, J. Faria, M. Ghamizi, D. V. Gonçalves, M. E. Gürlek, I. Karaouzas, Ü. Kebapçi, H. Şereflişan, C. Sobral, R. Sousa, A. Teixeira, S. Varandas, S. Zogaris & M. Lopes-Lima, 2016. Phylogeny, phylogeography, and evolution in the Mediterranean region: news from a freshwater mussel (Potomida, Unionida). Molecular Phylogenetics and Evolution 100: 322–332.

  20. Galeotti, D. M., M. A. Castalanelli, D. M. Groth, C. McCullough & M. Lund, 2015. Genotypic and morphological variation between Galaxiella nigrostriata (Galaxiidae) populations: implications for conservation. Marine and Freshwater Research 66: 187–194.

  21. Geist, J., 2010. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of conservation genetics and ecology. Hydrobiologia 644: 69–88.

  22. Gernhard, T., 2008. The conditioned reconstructed process. Journal of Theoretical Biology 253: 769–778.

  23. Gouws, G., B. A. Stewart & S. R. Daniels, 2006. Phylogeographic structure of a freshwater crayfish (Decapoda: Parastacidae: Cherax preissii) in south-western Australia. Marine and Freshwater Research 57: 837–848.

  24. Gouws, G., B. A. Stewart & S. R. Daniels, 2010. Phylogeographic structure in the gilgie (Decapoda: Parastacidae: Cherax quinquecarinatus): a south-western Australian freshwater crayfish. Biological Journal of the Linnean Society 101: 385–402.

  25. Graf, D. L. & D. Ó. Foighil, 2000a. The evolution of brooding characters among the freshwater pearly mussels (Bivalvia: Unionoidea) of North America. Journal of Molluscan Studies 66: 157–170.

  26. Graf, D. L. & D. Ó. Foighil, 2000b. Molecular phylogenetic analysis of 28S rDNA supports a Gondwanan origin for Australasian Hyriidae (Mollusca: Bivalvia: Unionoida). Vie et Milieu 50: 245–254.

  27. Graf, D. L. & K. S. Cummings, 2007. Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies 73: 291–314.

  28. Graf, D. L., H. Jones, A. J. Geneva, J. M. Pfeiffer III & M. W. Klunzinger, 2015. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa. Molecular Phylogenetics and Evolution 85: 1–9.

  29. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

  30. Haag, W. R., 2012. North American Freshwater Mussels: Natural History, Ecology and Conservation. Cambridge University Press, Cambridge.

  31. Hopper, S. D., 1979. Biogeographical aspects of speciation in the southwest Australian flora. Annual Review of Ecology and Systematics 10: 399–422.

  32. Hopper, S. D. & P. Gioia, 2004. The southwest floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology Evolution and Systematics 35: 623–650.

  33. Iredale, T., 1934. The freshwater mussels of Australia. Australian Zoologist 8: 57–78.

  34. Johnson, N. A., C. H. Smith, J. M. Pfeiffer, C. R. Randklev, J. D. Williams & J. D. Austin, 2018. Integrative taxonomy resolves taxonomic uncertainty for freshwater mussels being considered for protection under the US Endangered Species Act. Scientific Reports 8: 15892.

  35. Källersjö, M., T. von Proschwitz, S. Lundberg, P. Eldenas & C. Erseus, 2005. Evaluation of ITS rDNA as a complement to mitochondrial gene sequences for phylogenetic studies in freshwater mussels: an example using Unionidae from north-western Europe. Zoolica Scripta 34: 415–424.

  36. Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler & L. J. Jermiin, 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.

  37. Kat, P. W., 1984. Parasitism and the Unionacea (Bivalvia). Biological Reviews 59: 189–207.

  38. Klunzinger, M. & K. F. Walker, 2014. Westralunio carteri. The IUCN Red List of Threatened Species 2014: e.T23073A58526341.

  39. Klunzinger, M. W., S. J. Beatty, D. L. Morgan, G. J. Thomson & A. J. Lymbery, 2012. Glochidia ecology in wild fish populations and laboratory determination of competent host fishes for an endemic freshwater mussel of south-western Australia. Australian Journal of Zoology 60: 26–36.

  40. Klunzinger, M. W., S. J. Beatty, D. L. Morgan, A. M. Pinder & A. J. Lymbery, 2015. Range decline and conservation status of Westralunio carteri Iredale, 1934 (Bivalvia: Hyriidae) from south-western Australia. Australian Journal of Zoology 63: 127–135.

  41. Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

  42. Lanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld & B. Walcott, 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773.

  43. Lopes-Lima, M., R. Sousa, A. Teixeira, S. Varandas, N. Riccardi, D. C. Aldridge & E. Froufe, 2016. Newly developed microsatellite markers for the pan-European duck mussel, Anodonta anatina: revisiting the main mitochondrial lineages. Aquatic Conservation Marine and Freshwater Ecosystems 26: 307–318.

  44. Lopes-Lima, M., E. Froufe, V. T. Do, M. Ghamizi, K. E. Mock, Ü. Kebapçı, O. Klishko, S. Kovitvadhi, U. Kovitvadhi, O. S. Paulo, J. M. Pfeiffer III, M. Raley, N. Riccardi, H. Şereflişan, R. Sousa, A. Teixeira, S. Varandas, X. Wu, D. T. Zanatta, A. Zieritz & A. E. Bogan, 2017. Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): defining modern subfamilies and tribes. Molecular Phylogenetics and Evolution 106: 174–191.

  45. Lopes-Lima, M., L. E. Bulakova, A. Y. Kuratayev, K. Mehler, M. Seddon & R. Sousa, 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810: 1–14.

  46. Lopes-Lima, M., L. E. Bulakova, A. Y. Kuratayev, A. Gomes-dos-Santos, A. Zieritz, E. Froufe & A. E. Bogan, 2019. Revisiting the North American freshwater mussel genus Quadrula sensu lato (Bivalvia Unionidae): phylogeny, taxonomy and species delineation. Zoologica Scripta 48: 1–24.

  47. Machordom, A., R. Araujo, D. Erpenbeck & M. A. Ramos, 2003. Phylogeography and conservation genetics of endangered European Margaritiferidae (Bivalvia: Unionoidea). Biological Journal of the Linnean Society London 78: 235–252.

  48. Marshall, B. A., M. C. Fenwick & P. A. Ritchie, 2014. New Zealand recent Hyriidae (Mollusca: Bivalvia: Unionida). Molluscan Research 34: 181–200.

  49. McMichael, D. F. & I. D. Hiscock, 1958. A monograph of the freshwater mussels (Mollusca: Pelecypoda) of the Australian region. Australian Journal of Marine and Freshwater Research 9: 372–508.

  50. Morgan, D. L., P. J. Unmack, S. J. Beatty, B. C. Ebner, M. G. Allen, J. J. Keleher, J. A. Donaldson & J. Murphy, 2014. An overview of the ‘freshwater fishes’ of Western Australia. Journal of the Royal Society of Western Australia 97: 263–278.

  51. Moritz, C., 1994. Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology and Evolution 9: 373–375.

  52. Murphy, N. P. & C. M. Austin, 2004. Phylogeography of the widespread Australian freshwater prawn, Macrobrachium australiense (Decapoda, Palaemonidae). Journal of Biogeography 31: 1065–1072.

  53. Naimo, T. J., E. D. Damschen, R. G. Rada & E. M. Monroe, 1998. Nonlethal evaluation of the physiological health of unionid mussels: methods for biopsy and glycogen analysis. Journal of the North American Benthological Society 17: 121–128.

  54. Nee, S., E. C. Holmes, R. M. May & P. H. Harvey, 1994. Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London B Biological Science. 344: 77–82.

  55. Nguyen, L. T., H. A. Schmidt, A. von Haeseler & B. Q. Minh, 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molcular Biology and Evolution 32: 268–274.

  56. Palumbi, S. R., A. P. Martin, S. Romano, W. O. McMillan, L. Stice & G. Grabowski, 1991. The Simple Fool’s Guide to PCR, Version 2.0. Published and distributed by the authors: Honolulu.

  57. Pereira, D., M. C. D. Mansur, L. D. S. Duarte, A. S. de Oliveira, D. M. Pimpão, C. T. Callil, C. Ituarte, C. Parada, S. Peredo, G. Darrigran, F. Scarabino, C. Clavijo, G. Lara, I. C. Miyahira, M. T. R. Rodriguez & C. Lasso, 2014. Bivalve distribution in hydrographic regions in South America: historical overview and conservation. Hydrobiologia 735: 15–44.

  58. Playford, T. & K. F. Walker, 2008. Status of the endangered Glenelg River Mussel Hyridella glenelgensis (Unionoida: Hyriidae) in Australia. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 679–691.

  59. Prié, V., N. Puillandre & P. Bouchet, 2012. Bad taxonomy can kill: molecular reevaluation of Unio mancus Lamarck, 1819 (Bivalvia: Unionidae) and its accepted subspecies. Knowledge and Management of Aquatic Ecosystems 8: 1–18.

  60. Puillandre, N., M. V. Modica, Y. Zhang, L. Sirovich, M.-C. Boisselier, C. Cruaud, M. Holford & S. Samadi, 2012. Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21: 2671–2691.

  61. Rix, M. G., D. L. Edwards, M. Byrne, M. S. Harvey, L. Joseph & J. D. Roberts, 2014. Biogeogrpahy and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews of the Cambridge Philosophical Society 90: 762–793.

  62. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

  63. Rambaut, A., A. J. Drummond, D. Xie, G. Baele & M. A. Suchard, 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology 67: 901–904.

  64. Ratnasingham, S. & P. D. N. Hebert, 2013. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8: e66213.

  65. Rozas, J., A. Ferrer-Mata, J. C. Sánchez-Del Barrio, S. Guirao-Rico, P. Librado, S. E. Ramos-Onsins & A. Sánchez-Gracia, 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution 34: 3299–3302.

  66. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Press, New York.

  67. Sela, I., H. Ashkenazy, K. Katoh & T. Pupko, 2015. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research 43: W7–W14.

  68. Sheldon, F., 2017. Variable plasticity in shell morphology of some Australian freshwater mussels (Unionoida, Hyriidae). Transactions of the Royal Society of South Australia 141: 193–208.

  69. Sousa, R., A. Teixeira, A. Santos, H. Benaissa, S. Varandas, M. Ghamizi, V. Prié, E. Froufe & M. Lopes-Lima, 2018. Oued Bouhlou: a new hope for the Moroccan pearl mussel. Aquatic Conservation Marine and Freshwater Ecosystems 28: 247–251.

  70. Strayer, D. L., 2008. Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abundance. University of California Press, Berkley.

  71. Unmack, P. J., 2001. Biogeography of Australian freshwater fishes. Journal of Biogeography 28: 1053–1089.

  72. Unmack, P. J., M. P. Hammer, M. Adams & T. E. Dowling, 2011. A phylogenetic analysis of pygmy perches (Teleostei: Percichthyidae) with an assessment of the major historical influences on aquatic biogeography in southern Australia. Systematic Biology 60: 797–812.

  73. Vaughn, C. C., 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810: 15–27.

  74. Walker, J. M., J. P. Curole, D. E. Wade, E. G. Chapman, A. E. Bogan, G. T. Watters & W. R. Hoeh, 2006. Taxonomic distribution and phylogenetic utility of gender-associated mitochondrial genomes in the Unionoida (Bivalvia). Malacologia 48: 265–282.

  75. Walker, J. M., A. E. Bogan, E. A. Bonfiglio, D. C. Campbell, A. D. Christian, J. P. Curole, J. L. Harris, R. J. Wojtecki & W. R. Hoeh, 2007. Primers for amplifying the hypervariable, male-transmitted COII-COI junction region in amblemine freshwater mussels (Bivalvia: Unionoidea: Ambleminae). Molecular Ecology Notes 7: 489–491.

  76. Walker, K. F., H. A. Jones & M. W. Klunzinger, 2014a. Bivalves in a bottleneck: taxonomy, phylogeography and conservation of freshwater mussels (Bivalvia: Unionoida) in Australasia. Hydrobiologia 735: 61–79.

  77. Walker, K. F., H. A. Jones & M. Klunzinger, 2014b. Hyridella glenelgensis. The IUCN Red List of Threatened Species 2014: e.T58609631A58628791.

  78. Whelan, N. V., A. J. Geneva & D. L. Graf, 2011. Molecular phylogenetic analysis of tropical freshwater mussels (Mollusca: Bivalvia: Unionoida) resolves the position of Coelatura and supports a monophyletic Unionidae. Molecular Phylogenetics and Evolution 61: 504–514.

  79. Whiting, M. F., 2002. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31: 93–104.

  80. Wilson, B. E., 1995. A (not-so) radical solution to the species problem. Biology and Philosophy 10: 339–356.

  81. Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

Download references

Acknowledgements

Genetic analyses were funded by FCT – Portuguese Foundation for Science and Technology COMPETE 2020, Portugal 2020 and the European Union through the ERDF under Project ConBiomics: the missing approach for the Conservation of freshwater Bivalves No NORTE-01-0145-FEDER-030286 and, in part, through a grant from the Holsworth Wildlife Research Endowment. AGS and MLL were also funded by FCT under grants SFRH/BD/137935/2018 and SFRH/BD/115728/2016, respectively. This research was supported by national funds through FCT - Foundation for Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020. Specimen field collection was funded by a Murdoch University PhD Scholarship and a grant from the Holsworth Wildlife Research Endowment. Wildlife collection permits were obtained from the Western Australian Department of Environment and Conservation (SF007049) and the Western Australian Department of Fisheries (1724-2010-06). We thank James Keleher for his assistance during field collection and Corey Whisson and the WA Museum for facilitating specimen collection management. We especially thank the editor and anonymous reviewers for their comments which significantly improved upon earlier versions of this paper.

Author information

Correspondence to M. W. Klunzinger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Manuel P. M. Lopes-Lima, Nicoletta Riccardi, Maria Urbanska & Ronaldo G. Sousa / Biology and Conservation of Freshwater Molluscs

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klunzinger, M.W., Lopes-Lima, M., Gomes-dos-Santos, A. et al. Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns. Hydrobiologia (2020). https://doi.org/10.1007/s10750-020-04200-6

Download citation

Keywords

  • Unionida
  • Hyriidae
  • Phylogeny
  • Bivalve
  • Species delineation