Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

How free-floating macrophytes influence interactions between planktivorous fish and zooplankton in tropical environments? An in-lake mesocosm approach

Abstract

In tropical climates, free-floating aquatic plants may dominate shallow lakes and affect trophic interactions between zooplankton and their predators have been presented as an important subject to be investigated. The present study used mesocosms within a tropical lake in rural São Paulo-Brazil to test the hypothesis that free-floating macrophytes (FFM) reduce predation pressure on prey, as these aquatic plants provide refuge and shade. Fish predation by Astyanax lacustris was observed with the presence and absence of the FFM Eicchornia crassipes over a period of 5 weeks. FFM promoted a more diverse community structure by providing new habitats, especially for small- to medium-sized littoral cladocerans. Tropocyclops prasinus meridionalis were more abundant with the presence of macrophytes. Furthermore, the size distribution of zooplankton differed between treatments at the end of the experiment, in which the larger organisms were less abundant in the treatment with FFM. The present study suggests that FFM affected the interactions between zooplankton and predators, but this influence occurred due to the macrophytes acting as refuge to smaller organisms rather than large-sized individuals. The results also indicated that the macrophytes influenced the zooplankton community by contributing to an increased species richness.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alvares, C. A., J. L. Stape, P. C. Sentelhas, G. de Moraes, J. Leonardo & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

  2. American Public Health Association (APHA). (2012). Standard methods for the examination of water and wastewater (22 Edn.). Washington, D.C.

  3. Arcifa, M. S., T. G. Northcote & O. Froehlich, 1986. Fish-zooplankton interactions and their effects on water quality of a tropical Brazilian reservoir. Hydrobiologia 139: 49–58.

  4. Arcifa, M. S., T. G. Northcote & O. Froehlich, 1991. Interactive ecology of two cohabiting characin fishes (Astyanax fasciatus and Astyanax bimaculatus) in a eutrophic Brazilian reservoir. Journal of Tropical Ecology 7: 257–268.

  5. Arcifa, M. S., T. C. dos Santos Ferreira, C. Fileto, M. S. M. Castilho-Noll, T. C. Bunioto & W. J. Minto, 2015. A long-term study on crustacean plankton of a shallow tropical lake: the role of invertebrate predation. Journal of Limnology 74: 606–617.

  6. Battauz, Y. S., S. B. J. de Paggi & J. C. Paggi, 2017. Macrophytes as dispersal vectors of zooplankton resting stages in a subtropical riverine floodplain. Aquatic Ecology 51: 191–201.

  7. Bicudo, D. D. C., B. M. Fonseca, L. M. Bini, L. O. Crossetti, C. E. D. M. Bicudo & T. Araújo-Jesus, 2007. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology 52: 1120–1133.

  8. Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.

  9. Bolduc, P., A. Bertolo & B. Pinel-Alloul, 2016. Does submerged aquatic vegetation shape zooplankton community structure and functional diversity? A test with a shallow fluvial lake system. Hydrobiologia 778: 151–165.

  10. Bonecker, C. C., F. D. Azevedo & N. R. Simões, 2011. Zooplankton body-size structure and biomass in tropical floodplain lakes: relationship with planktivorous fishes. Acta Limnologica Brasiliensia 23: 217–228.

  11. Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.

  12. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

  13. Brucet, S., D. Boix, R. López-Flores, A. Badosa, R. Moreno-Amich & X. D. Quintana, 2005. Zooplankton structure and dynamics in permanent and temporary Mediterranean salt marshes: taxon-based and size-based approaches. Archiv für Hydrobiologie 162: 535–555.

  14. Brucet, S., D. Boix, X. D. Quintana, E. Jensen, L. W. Nathansen, C. Trochine, M. Meerhoff, S. Gascón & E. Jeppesen, 2010. Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnology and Oceanography 55: 1697–1711.

  15. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.

  16. Câmara, C. F., M. S. M. Castilho-Noll & M. S. Arcifa, 2012. Predation on microcrustaceans in evidence: the role of chaoborid larvae and fish in two shallow and small Neotropical reservoirs. Nauplius 20: 1–14.

  17. Carpenter, S. R. & J. F. Kitchell, 1984. Plankton community structure and limnetic primary production. American Naturalist 124: 159–172.

  18. Casatti, L., 2002. Alimentação dos peixes em um riacho do Parque Estadual Morro do Diabo, bacia do alto rio Paraná, sudeste do Brasil. Biota Neotropica 2002(2): 1–14.

  19. Castilho-Noll, M. S. M. & M. S. Arcifa, 2007. Mesocosm experiment on the impact of invertebrate predation on zooplankton of a tropical lake. Aquatic Ecology 41: 587–598.

  20. Castilho-Noll, M. S. M., C. F. Câmara, M. F. Chicone, É. H. Shibata & L. R. Stephan, 2012. Copepods (Crustacea, Maxillopoda) from shallow reservoirs. Acta Limnologica Brasiliensia 24: 149–159.

  21. De Neiff, A. P., J. J. Neiff, O. Orfeo & R. Carignan, 1994. Quantitative importance of particulate matter retention by the roots of Eichhornia crassipes in the Paraná floodplain. Aquatic Botany 47: 213–223.

  22. Debastiani-Júnior, J. R., L. M. A. Elmoor-Loureiro & M. G. Nogueira, 2016. Habitat architecture influencing microcrustaceans composition: a case study on freshwater Cladocera (Crustacea Branchiopoda). Brazilian Journal of Biology 76: 93–100.

  23. Esteves, K. E., 1996. Feeding ecology of three Astyanax species (Characidae, Tetragonopterinae) from a floodplain lake of Mogi-Guaçú River, Paraná River basin, Brazil. Environmental Biology of Fishes 46: 83–101.

  24. Esteves, K. E. & P. M. Galetti Jr., 1995. Food partitioning among some characids of a small Brazilian floodplain lake from the Paraná River basin. Environmental Biology of Fishes 42: 375–389.

  25. Estlander, S., L. Nurminen, M. Olin, M. Vinni & J. Horppila, 2009. Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia 620: 109–120.

  26. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.

  27. Fontanarrosa, M. S., G. Chaparro, P. de Tezanos-Pinto, P. Rodriguez & I. O’Farrell, 2010. Zooplankton response to shading effects of free-floating plants in shallow warm temperate lakes: a field mesocosm experiment. Hydrobiologia 646: 231–242.

  28. Fryer, G., 1968. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philosophical Transactions of the Royal Society of London B: Biological Sciences 254: 221–384.

  29. Fryer, G., 1974. Evolution and adaptive radiation in the Macrothricidae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philosophical Transactions of the Royal Society of London B: Biological Sciences 269: 137–274.

  30. Fryer, G., 1991. Functional morphology and the adaptive radiation of the Daphniidae (Branchiopoda: Anomopoda). Philosophical Transactions: Biological Sciences 331: 1–99.

  31. Golterman, H. L., R. S. Clymo & M. Onstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters. Blackwell Scientific Publication, Oxford: 214.

  32. Havens, K. E., J. R. Beaver, E. E. Manis & T. L. East, 2015. Inter-lake comparisons indicate that fish predation, rather than high temperature, is the major driver of summer decline in Daphnia and other changes among cladoceran zooplankton in subtropical Florida lakes. Hydrobiologia 750: 57–67.

  33. Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira De Mello, S. García & E. Jeppesen, 2008. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1807.

  34. Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García, S. L. Amsinck, J. C. Paggi, S. José de Paggi & E. Jeppesen, 2011. High predation is the key factor for dominance of small-bodied zooplankton in warm lakes–evidence from lakes, fish enclosures and surface sediment. Hydrobiologia 667: 133–147.

  35. Iglesias, C., E. Jeppesen, N. Mazzeo, J. P. Pacheco, F. Teixeira de Mello & F. Landkildehus, 2017. Fish but not macroinvertebrates promote trophic cascading effects in high density submersed plant experimental lake food webs in two contrasting climate regions. Water 9: 514.

  36. Jeppesen, E., M. Søndergaard, O. Sortkjoær, E. Mortensen & P. Kristensen, 1990. Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Søbygård, Denmark. Hydrobiologia 191: 149–164.

  37. Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen & O. Sortkjær, 1996. Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Søbygaard. Journal of Plankton Research 18: 1605–1625.

  38. Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

  39. Lavorel, S., K. Grigulis, S. McIntyre, N. S. G. Williams, D. Garden, D. Josh, S. Berman, F. Quétier, A. Trébault & A. Bonis, 2008. Assessing functional diversity in the field – methodology matters! Functional Ecology 22: 134–147.

  40. Lopes, P. M., R. Bozelli, L. M. Bini, J. M. Santangelo & S. A. Declerck, 2016. Contributions of airborne dispersal and dormant propagule recruitment to the assembly of rotifer and crustacean zooplankton communities in temporary ponds. Freshwater Biology 61: 658–669.

  41. Lucena, C. A. S., B. B. Calegari, E. H. L. Pereira & E. Dallegrave, 2013. O uso de óleo de cravo na eutanásia de peixes. Boletim Sociedade Brasileira de Ictiologia 105: 20–24.

  42. Maia-Barbosa, P. M. & T. Matsumura-Tundisi, 1984. Consumption of zooplanktonic organisms by Astyanax fasciatus Cuvier, 1819 (Osteichthyes, Characidae) in Lobo (Broa) Reservoir, São Carlos, SP, Brazil. Hydrobiologia 113: 171–181.

  43. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for Assessment of Secondary Productivity in Freshwaters. Blackwell Scientific Publishing, Oxford: 228–265.

  44. Meerhoff, M., C. Fosalba, C. Bruzzone, N. Mazzeo, W. Noordoven & E. Jeppesen, 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51: 1320–1330.

  45. Meerhoff, M., C. Iglesias, F. Teixeira De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behavior of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

  46. Meschiatti, A. J. & M. S. Arcifa, 2002. Early life stages of fish and the relationships with zooplankton in a tropical Brazilian reservoir: Lake Monte Alegre. Brazilian Journal of Biology 62: 41–50.

  47. Montiel-Martínez, A., J. Ciros-Pérez & G. Corkidi, 2015. Littoral zooplankton–water hyacinth interactions: habitat or refuge? Hydrobiologia 755: 173–182.

  48. O’Farrell, I., P. T. Pinto, P. L. Rodriguez, G. Chaparro & H. N. Pizarro, 2009. Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology 54: 363–375.

  49. Orlova-Bienkowskaja, M. Y., 2001. Cladocera: Anomopoda, Daphiniidae: Genus Simocephalus. In Drumont, H. J. F. (ed.), Guides to identification of the Microinvertebrates of the Continental Waters of the World. Backhuys Publishers, Leiden: 1–127.

  50. Pantel, J. H., C. Duvivier & L. D. Meester, 2015. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecology Letters 18: 992–1000.

  51. Pinto-Coelho, R. M., J. F. Bezerra-Neto, F. Miranda, T. G. Mota, R. Resck, A. M. Santos, P. M. Maia-Barbosa, N. A. S. T. Mello, M. M. Marques, M. O. Campos & F. A. R. Barbosa, 2008. The inverted trophic cascade in tropical plankton communities: impacts of exotic fish in the Middle Rio Doce lake district, Minas Gerais, Brazil. Brazilian Journal of Biology 68: 1025–1037.

  52. Pujoni, D. G. F., P. M. Maia-Barbosa, F. A. R. Barbosa, C. R. Fragoso Jr. & E. H. Van Nes, 2016. Effects of food web complexity on top-down control in tropical lakes. Ecological Modeling 320: 358–365.

  53. Rocha, F. C. D., L. Casatti, F. R. Carvalho & A. M. D. Silva, 2009. Fish assemblages in stream stretches occupied by cattail (Typhaceae, Angiospermae) stands in Southeast Brazil. Neotropical Ichthyology 7: 241–250.

  54. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

  55. Scheffer, M., S. Szabo, A. Gragnani, E. H. van Nes, S. Rinaldi & N. Kautsky, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America 100: 4040–4045.

  56. Sinistro, R., I. Izaguirre & V. Asikian, 2006. Experimental study on the microbial plankton community in a South American wetland (Lower Paraná River Basin) and the effect of the light deficiency due to the floating macrophytes. Journal of Plankton Research 28: 753–768.

  57. Soares, C. M., C. Hayashi, A. C. E. Faria-Soares & E. M. Galdioli, 2016. Impact of Brazilian fish species at early developmental stages on plankton communities and water chemical parameters. Acta Scientiarum Biological Sciences 38: 263–272.

  58. Stephan, L. R., B. E. Beisner, S. G. M. Oliveira & M. S. M. Castilho-Noll, 2019. Influence of macrophytes on a tropical microcrustacean community based on taxonomic and functional trait diversity. Water 1(11): 2423.

  59. Sterner, R. W., 1989. The role of grazers in phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer, New York: 107–169.

  60. Teixeira de Mello, F., M. Meerhoff, Z. Pekcan-hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.

  61. Teixeira, C. & M. B. Kutner, 1962. Plankton studies in a mangrove environment: I first assessment of standing stock and principal ecological factors. Boletim do Instituto Oceanográfico 12: 101–124.

  62. Thomaz, S. M. & E. R. D. Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

  63. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.

  64. Vanni, M. J. & D. L. Findlay, 1990. Trophic cascades and phytoplankton community structure. Ecology 71: 921–937.

  65. Vilella, F. S., F. G. Becker & S. M. Hartz, 2002. Diet of Astyanax species (Teleostei, Characidae) in an Atlantic forest river in Southern Brazil. Brazilian Archives of Biology and Technology 45: 223–232.

  66. Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

Download references

Acknowledgements

We would like to thank all our colleagues from the Laboratório de Ecologia de Zooplâncton (Zooplankton Ecology Laboratory) during the field work, IBILCE/UNESP for providing its facilities, those responsible for the Fazenda Experimental of Pólo Regional Centro Norte, the anonymous reviewers, especially Mariana Meerhoff, the associate editor, for their comments on the manuscript. We thank “The São Paulo State Research Foundation (FAPESP) (process 2013/19848-0) for the financial support for this study. Finally, we would like to thank Dr. Dallas L. Flickinger for the English revision.

Funding

The research that led to the presented results was mainly financed by “The São Paulo State Research Foundation (FAPESP)” (Process Number 2013/19848-0), SNI (ANII-Uruguay) and by PEDECIBA, and CAPES which provided the scholarship awarded to the author during his Master’s degree.

Author information

Correspondence to Natan Guilherme dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 107 kb)

Supplementary material 2 (TIFF 7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, N.G., Stephan, L.R., Otero, A. et al. How free-floating macrophytes influence interactions between planktivorous fish and zooplankton in tropical environments? An in-lake mesocosm approach. Hydrobiologia (2020). https://doi.org/10.1007/s10750-020-04194-1

Download citation

Keywords

  • Refuge
  • Trophic interactions
  • Predation
  • Daphnia laevis
  • Eichhornia crassipes