, Volume 844, Issue 1, pp 31–42 | Cite as

Rapid adaptation of Brachionus angularis (Rotifera) to invasion by Brachionus calyciflorus

  • Yi-Long XiEmail author
  • Ke-Qiang Huang
  • Ling Pan
  • Han Zhu
  • Ya-Li Ge
  • Xin-Li Wen
  • Xian-Ling Xiang


To test the hypothesis that Brachionus angularis can rapidly develop local adaptation to invasion by other monogonont rotifers, replicate populations of B. angularis were exposed to two environments invaded by B. calyciflorus at different inoculation densities and an environment free from invaders. During the selection experiment, the density of each population was reduced to starting conditions every 3 days, and the changes in population growth rate and mictic ratio of B. angularis were continuously tracked. During the 81-day (69 asexual generations) period of selection, the B. angularis populations in the environments with invaders showed a significant increase in growth rate but a non-significant change in mictic ratio over time when compared with those in the environment without invaders. A common garden experiment revealed that when exposed to the environments with invaders, the B. angularis populations evolved in the environments with invaders had higher growth rates than those evolved in the environment without invaders, and the opposite was also true, indicating that local adaptation was rapidly formed. Info-chemicals released by invaders to the environment might increase the heritability of higher growth rates, and thus facilitate the local adaptation of B. angularis populations to invasion by B. calyciflorus.


Rotifers Population growth rate Mictic ratio Selective pressure Rapid evolution 



This work was funded by the Natural Science Foundation of China (31470015) and the Foundation of Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province. We are grateful to the anonymous referees for their valuable comments and constructive suggestions, which have greatly improved the manuscript. We thank Catherine Dandie from Liwen Bianji, Edanz Editing China (, and Gen Zhang from Shenzhen Nobel Science and Technology Service Co., Ltd. for language editing service.

Supplementary material

10750_2019_3959_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 41 kb)
10750_2019_3959_MOESM2_ESM.doc (145 kb)
Supplementary material 2 (DOC 146 kb)


  1. Alcantara-Rodriguez, J., J. Ciros-Pérez, E. Ortega-Mayagoitia, C. R. Serrania-Soto & E. Piedra-Ibarra, 2012. Local adaptation in populations of a Brachionus group plicatilis cryptic species inhabiting three deep crater lakes in Central Mexico. Freshwater Biology 57: 728–740.Google Scholar
  2. Aránguiz-Acuña, A. & R. Ramos-Jiliberto, 2014. Diapause may promote coexistence of zooplankton competitors. Journal of Plankton Research 36: 978–988.Google Scholar
  3. Becks, L. & A. F. Agrawal, 2010. Higher rates of sex evolve in spatially heterogeneous environments. Nature 468: 89–92.PubMedGoogle Scholar
  4. Becks, L. & A. F. Agrawal, 2011. The effect of sex on the mean and variance of fitness in facultatively sexual rotifers. Journal of Evolutionary Biology 24: 656–664.PubMedGoogle Scholar
  5. Becks, L. & A. F. Agrawal, 2012. The evolution of sex is favored during adaptation to new environments. PLoS Biology 10: e1001317.PubMedPubMedCentralGoogle Scholar
  6. Becks, L. & A. F. Agrawal, 2013. Higher rates of sex evolve under K-selection. Journal of Evolutionary Biology 26: 900–905.PubMedGoogle Scholar
  7. Bennett, W. N. & M. E. Boraas, 1989. A demographic profile of the fastest growing metazoan: a strain of Brachionus calyciflorus (Rotifera). Oikos 55: 365–369.Google Scholar
  8. Bonsall, M. B. & M. P. Hassell, 1997. Apparent competition structures ecological assemblages. Nature 388: 371–373.Google Scholar
  9. Campillo, S., E. M. Garcia-Roger, M. J. Carmona, A. Gómez & M. Serra, 2009. Selection on life-history traits and genetic population divergence in rotifers. Journal of Evolutionary Biology 22: 2542–2553.PubMedGoogle Scholar
  10. Campillo, S., E. M. Garcia-Roger, M. J. Carmona & M. Serra, 2011. Local adaptation in rotifer populations. Evolutionary Ecology 25: 933–947.Google Scholar
  11. Carmona, M. J., M. Serra & M. R. Miracle, 1993. Relationships between mixis in Brachionus plicatilis and preconditioning of culture medium by crowding. Hydrobiologia 255(256): 145–152.Google Scholar
  12. Carmona, M. J., A. Gomez & M. Serra, 1995. Mictic patterns of Brachionus plicatilis in small ponds. Hydrobiologia 313(314): 365–371.Google Scholar
  13. Carmona, M. J., N. Dimas-Flores, E. M. Garcia-Roger & M. Serra, 2009. Selection of low investment in sex in a cyclically parthenogenetic rotifer. Journal of Evolutionary Biology 22: 1975–1983.PubMedGoogle Scholar
  14. Chase, J. M., P. A. Abrams & J. P. Grover, 2002. The interaction between predation and competition: a review and synthesis. Ecology Letters 5: 302–315.Google Scholar
  15. Ciros-Pérez, J., M. J. Carmona & M. Serra, 2002. Resource competition and patterns of sexual reproduction in sympatric sibling rotifer species. Oecologia 131: 35–42.PubMedGoogle Scholar
  16. Cody, M. L. & J. M. Diamond, 1975. Ecology and Evolution of Communities. Harvard University Press, Cambridge.Google Scholar
  17. Conn, D. B., 2014. Aquatic invasive species and emerging infectious disease threats: a one health perspective. Aquatic Invasions 9: 383–390.Google Scholar
  18. Declerck, A. J. S. & S. Papakostas, 2017. Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications. Hydrobiologia 796: 131–144.Google Scholar
  19. Declerck, S. A. J., A. R. Malo, S. Diehl, D. Waasdorp, K. D. Lemmen, K. Proios & S. Papakostas, 2015. Rapid adaptation of herbivore consumers to nutrient limitation: eco-evolutionary feedbacks to population demography and resource control. Ecology Letters 18: 553–562.PubMedGoogle Scholar
  20. Diamond, J. M. & T. J. Case, 1986. Community Ecology. Harper & Row, New York.Google Scholar
  21. Dumont, H. J., 1994. Ancient lakes have simplified pelagic food webs. Archiv für Hydrobiologie Beih 44: 223–234.Google Scholar
  22. Fussmann, G. F., 2011. Rotifers: excellent subjects for the study of macro- and micro-evolutionary change. Hydrobiologia 662: 11–18.Google Scholar
  23. Fussmann, G. F., S. P. Ellner & N. G. Hairston, 2003. Evolution as a critical component of plankton dynamics. Proceedings of the Royal Society B – Biological Sciences of United States of America 270: 1015–1022.Google Scholar
  24. Garcia-Roger, E. M., M. J. Carmona & M. Serra, 2005. Deterioration patterns in diapausing egg banks of Brachionus (Muller, 1786) rotifer species. Journal of Experimental Marine Biology and Ecology 314: 149–161.Google Scholar
  25. Gilbert, J. J., 1963. Mictic female production in the rotifer Brachionus calyciflorus. Journal of Experimental Zoology 153: 113–124.Google Scholar
  26. Gilbert, J. J., 1974. Dormancy in rotifers. Transactions of the American Microscopical Society 93: 490–513.Google Scholar
  27. Gilbert, J. J., 1980. Further observations on developmental polymorphism and its evolution in the rotifer Brachionus calyciflorus. Freshwater Biology 10: 281–294.Google Scholar
  28. Gilbert, J. J., 1988. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnology and Oceanography 33: 1286–1303.Google Scholar
  29. Gilbert, J. J., 2003. Specificity of crowding response that induces sexuality in the rotifer Brachionus. Limnology and Oceanography 48: 1297–1303.Google Scholar
  30. Guo, R., T. W. Snell & J. Yang, 2011. Ecological strategy of rotifer (Brachionus calyciflorus) exposed to predator- and competitor-conditioned media. Hydrobiologia 658: 163–171.Google Scholar
  31. Hagiwara, A., M.-M. Jung, T. Sato & K. Hirayama, 1995. Interspecific relations between marine rotifer Brachionus rotundiformis and zooplankton species contaminating in the rotifer mass culture tank. Fisheries Science 61: 623–627.Google Scholar
  32. Havel, J. E., K. E. Kovalenko, S. M. Thomaz, S. Amalfitano & L. B. Kats, 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750: 147–170.Google Scholar
  33. Hereford, J., 2009. A quantitative survey of local adaptation and fitness trade-offs. The American Naturalist 173: 579–588.PubMedGoogle Scholar
  34. Hu, H.-Y. & Y.-L. Xi, 2008. Demographic parameters and mixis of three Brachionus angularis Gosse (Rotatoria) strains fed on different algae. Limnologica 38: 56–62.Google Scholar
  35. Jung, M.-M., A. Hagiwara & K. Hirayama, 1997. Interspecific interactions in the marine rotifer microcosm. Hydrobiologia 358: 121–126.Google Scholar
  36. Kawecki, T. J. & D. Ebert, 2004. Conceptual issues in local adaptation. Ecology Letters 7: 1225–1241.Google Scholar
  37. Kirk, K. L., 1998. Enrichment can stabilize population dynamics: autotoxins and density dependence. Ecology 79: 2456–2462.Google Scholar
  38. Kotani, T., M. Ozaki, K. Matsuoka, T. W. Snell & A. Hagiwara, 2001. Reproductive isolation among geographically and temporally isolated marine Brachionus populations. Hydrobiologia 446(447): 283–290.Google Scholar
  39. Li, S. H., H. Zhu, Y. Z. Xia, M. J. Yu, K. S. Liu, Z. Y. Ye & Y. X. Chen, 1959. The mass culture of unicellular green algae. Acta Hydrobiologica Sinica 4: 462–472.Google Scholar
  40. Lucía-Pavón, E., S. S. S. Sarma & S. Nandini, 2001. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Revista de Biología Tropical 49: 895–902.PubMedGoogle Scholar
  41. Maeda, M. & A. Hino, 1991. Environmental management for mass culture of rotifer, Brachionus plicatilis. In Fulks, W. & K. L. Main (eds), Rotifer and Microalgae Culture Systems. Proceedings of a U.S.–Asia Workshop. The Oceanic Institute, Honolulu: 125–133.Google Scholar
  42. Marcus, N. H., R. Lutz, W. Burnett & P. Cable, 1994. Age, viability and vertical distribution of zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnology and Oceanography 39: 154–158.Google Scholar
  43. Martínez-Ruiz, C. & E. M. García-Roger, 2015. Being first increases the probability of long diapause in rotifer resting eggs. Hydrobiologia 745: 111–121.Google Scholar
  44. Michaloudi, E., S. Papakostas, G. Stamou, V. Neděla, E. Tihlařiková, W. Zhang & S. A. J. Declerck, 2018. Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re)description of four species. PLoS ONE. Scholar
  45. Mitchell, S. E. & G. R. Carvalho, 2002. Comparative demographic impacts of ‘info-chemicals’ and exploitative competition: an empirical test using Daphnia magna. Freshwater Biology 47: 459–471.Google Scholar
  46. Moran, N. A. & D. B. Sloan, 2015. The hologenome concept: helpful and hollow? PLoS Biology 13: e1002311.PubMedPubMedCentralGoogle Scholar
  47. Morin, P. J., 2011. Community Ecology, 2nd ed. Wiley-Blackwell, Oxford.Google Scholar
  48. Poole, R. W., 1974. An Introduction to Quantitative Ecology. McGraw-Hill, New York.Google Scholar
  49. Pourriot, R., 1963. Influence du rythme nycthéméral sur le cycle sexual de quelques Rotifères. Comptes Rendus de I’Académie des Sciences Paris 256: 5216–5219.Google Scholar
  50. Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.Google Scholar
  51. Rebolledo, U. A., S. Nandini, S. S. S. Sarma, J. C. R. Reyes & G. A. R. M. De` Oca, 2018. Demographic and competition studies on Brachionus ibericus and Proales similis in relation to salinity and algal (Nannochloropsis oculata) density. Aquaculture International 26: 629–644.Google Scholar
  52. Reguera, B., 1984. The effect of ciliate contamination in mass cultures of the rotifer, Brachionus plicatilis O. F. Müller. Aquaculture 40: 103–108.Google Scholar
  53. Sarma, S. S. S. & S. Nandini, 2002. Comparative life table demography and population growth of Brachionus macracanthus Daday, 1905 and Platyias quadricornis Ehrenberg, 1832 (Rotifera, Brachionidae) in relation to algal (Chlorella vulgaris) food density. Acta Hydrochim Hydrobiologie 30: 128–140.Google Scholar
  54. Sarma, S. S. S. & S. Nandini, 2018. Allelopathic interactions in freshwater ecosystems with special reference to zooplankton. In Kaul, B. L., P. L. Koul & A. K. Verma (eds), Advances in Fish and Wildlife Ecology and Biology, Vol. 7. Astral International Pvt. Ltd., New Delhi: 195–221.Google Scholar
  55. Sarma, S. S. S., N. Iyer & H. J. Dumont, 1996. Competitive interactions between herbivorous rotifers: importance of food concentration and initial population density. Hydrobiologia 331: 1–7.Google Scholar
  56. Sarma, S. S. S., M. A. Fernández & S. Nandini, 1999. Competition between Brachionus calyciflorus Pallas and Brachionus patulus (Müller) (Rotifera) in relation to algal food concentration and initial population density. Aquatic Ecology 33: 339–345.Google Scholar
  57. Sarma, S. S. S., S. A. Rivera & F. E. Hinojosa, 2007. Combined influence of food level and inoculation density on competition between Anuraeopsis fissa and Brachionus patulus or Brachionus macracanthus (Rotifera: Brachionidae). Russian Journal of Ecology 38: 353–362.Google Scholar
  58. Sarma, S. S. S., J. A. Guevara-Franco, B. Almaraz-Ornelas & S. Nandini, 2018. Interspecific effects of allelochemicals of 4-species of Brachionidae (Rotifera: Monogononta) on the population growth. Allelopathy Journal 45: 277–290.Google Scholar
  59. Scheuerl, T. & C.-P. Stelzer, 2013. Patterns and dynamics of rapid local adaptation and sex in varying habitat types in rotifers. Ecology and Evolution 3: 4253–4264.PubMedPubMedCentralGoogle Scholar
  60. Schoener, W. T., 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331: 426–429.PubMedGoogle Scholar
  61. Schröder, A., A. van Leeuwen & T. C. Cameron, 2014. When less is more: positive population-level effects of mortality. Trends in Ecology and Evolution 29: 614–624.PubMedGoogle Scholar
  62. Simões, P., M. R. Rose, A. Duarte, R. Goncalves & M. Matos, 2007. Evolutionary domestication in Drosophila subobscura. Journal of Evolutionary Biology 20: 758–766.PubMedGoogle Scholar
  63. Smith, H. A. & T. W. Snell, 2012. Rapid evolution of sex frequency and dormancy as hydroperiod adaptations. Journal of Evolutionary Biology 25: 2501–2510.PubMedGoogle Scholar
  64. Smith, H. A. & T. W. Snell, 2014. Differential evolution of lifespan and fecundity between asexual and sexual females in a benign environment. International Review of Hydrobiology 99: 117–124.PubMedPubMedCentralGoogle Scholar
  65. Snell, T. W., J. Kubanek, W. Carter, A. B. Payne, J. Kim, M. K. Hicks & C. P. Stelzer, 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.Google Scholar
  66. Starkweather, P. L., J. J. Gilbert & T. M. Frost, 1980. Bacterial feeding by the rotifer Brachionus calyciflorus: clearance and ingestion rates, behavior and population dynamics. Oecologia 44: 26–30.Google Scholar
  67. Stelzer, C., 2005. Evolution of rotifer life histories. Hydrobiologia 546: 335–346.Google Scholar
  68. Stelzer, C.-P., 2011. The cost of sex and competition between cyclical and obligate parthenogenetic rotifers. The American Naturalist 177: E43–E53.PubMedGoogle Scholar
  69. Stelzer, C. P. & T. W. Snell, 2003. Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent chemical cue. Limnology and Oceanography 48: 939–943.Google Scholar
  70. Stelzer, C. P. & T. W. Snell, 2006. Specificity of the crowding response in the Brachionus plicatilis species complex. Limnology and Oceanography 51: 125–130.Google Scholar
  71. Verschoor, A. M., Y. S. Zadereev & W. M. Mooij, 2007. Infochemical-mediated trophic interactions between the rotifer Brachionus calyciflorus and its food algae. Limnology and Oceanography 52: 2109–2119.Google Scholar
  72. Walczyńska, A., L. Franch-Gras & M. Serra, 2017. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796: 191–200.Google Scholar
  73. Walz, N., 1993. Plankton Regulation Dynamics. Springer, Berlin.Google Scholar
  74. Wang, M., Y.-L. Xi, B. Zhou & Y. Zhang, 2014. Adaptation of Brachionus calyciflorus (Rotifera) from Lake Jinghu in summer to water temperature: population growth experiment study. Acta Hydrobiologica Sinica 38: 1017–1023.Google Scholar
  75. Wen, X.-L., Y.-L. Xi, F.-P. Qian, G. Zhang & X.-L. Xiang, 2011. Comparative analysis of rotifer community structure in five subtropical shallow lakes in east China: role of physical and chemical conditions. Hydrobiologia 661: 303–316.Google Scholar
  76. Wen, X.-L., Y.-L. Xi, G. Zhang, Y.-H. Xue & X.-L. Xiang, 2016. Coexistence of cryptic Brachionus calyciflorus (Rotifera) species: roles of environmental variables. Journal of Plankton Research 38: 478–489.Google Scholar
  77. Yang, H. Q. & X. Y. Yang, 1996. Experimental studies on the culture of Brachionus angularis. Journal of Fisheries of China 20: 85–87.Google Scholar
  78. Zhang, Z. S. & X. F. Huang, 1991. Methods for Study on Freshwater Plankton. Science Press, Beijing.Google Scholar
  79. Zhang, Y., A. Zhou, Y.-L. Xi, Q. Sun, L.-F. Ning, P. Xie, X.-L. Wen & X.-L. Xiang, 2018. Temporal patterns and processes of genetic differentiation of the Brachionus calyciflorus (Rotifera) complex in a subtropical shallow lake. Hydrobiologia 807: 313–331.Google Scholar
  80. Zhu, G. L. & Z. M. Zhao, 2013. The preliminary study on artificial propagation and fry rearing of Misgurnus anguillicaudatus. Agricultural Science and Technology 8: 13–18.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Provincial Key Laboratory for Conservation and Utilization of Important Biological Resource in Anhui, College of Life SciencesAnhui Normal UniversityWuhuPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City BeltAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations