Advertisement

Alteration in microcrustacean secondary production and herbivory effects between the River Danube and its floodplain lake

  • Anita Galir BalkićEmail author
  • Ivančica Ternjej
  • Nataša Katanić
Primary Research Paper
  • 25 Downloads

Abstract

The aim of this study was to determine microcrustacean secondary production (P/B) and a herbivory ratio (ZB:PB) in the River Danube and a floodplain lake to reveal models in plankton food web functioning. P/B was used to assess population variation under different environmental conditions, while ZB:PB provided information on the zooplankton grazing intensity on algae. Seasonal changes, displayed by the hydrological regime, i.e., related water level fluctuation, were expected to explain different plankton patterns between the study sites as a result of unlike community composition and food quality. The structural equation modelling we used identified specific pathways of measured indexes at the individual localities. Although the direct impact of water level fluctuation on the studied communities was low, the following difference in abiotic components might have caused shifts in zooplankton assemblages that changed P/B and ZB:PB ratios. In the floodplain lake, P/B was primarily influenced by biotic components, and herbivory alteration was expressed through top-down control. On the contrary, P/B in the riverine system was controlled by an environmental element and herbivory was driven by the bottom-up resources. The results show the usefulness of the studied indexes in determining variations of zooplankton functional processes in the hydrologically dynamic environments.

Keywords

Cladocera Copepoda Floodplain lake P/B ratio ZB:PB SEM 

Notes

Acknowledgements

The Croatian Ministry of Science, Education and Sports supported the research Project No. 285-0000000-2674. Many thanks to project leader Prof. Jasna Vidaković for her support and Dubravka Špoljarić Maronić Ph.D., Filip Stević Ph.D., Goran Palijan Ph.D. and Vanda Zahirović for field and laboratory assistance. A map of the study area was provided by Igor Stanković Ph.D.

Supplementary material

10750_2019_3950_MOESM1_ESM.xlsx (19 kb)
Online Resource 1 Species list and abundance data recorded at the River Danube and in Lake Sakadaš during the study period in 2010 and 2011. (XLSX 19 kb)

References

  1. Alavifar, A., M. Karimimalayer & M. K. Anuar, 2012. Structural equation modeling VS multiple regression. The first and second generation of multivariate techniques. IRACST—Engineering Science and Technology: An International Journal 2: 2250–3498.Google Scholar
  2. Amoros, C., 1984. Crustaces Cladoceres. Introduction Pratique a la Systematique des Organismes des Eaux Continentales Francaises. Université Claude Bernard, Lyon.CrossRefGoogle Scholar
  3. APHA (American Public Health Association), 1992. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.Google Scholar
  4. Arbuckle, J. L., 2009. Amos 17.0 User’s Guide. SPSS, Chicago.Google Scholar
  5. Arhonditsis, G. B., C. A. Stow, L. J. Steinberg, M. A. Kenney, R. C. Lathrop, S. J. McBride & K. H. Reckhowa, 2006. Exploring ecological patterns with structural equation modeling and Bayesian analysis. Ecological Modelling 192: 385–409.CrossRefGoogle Scholar
  6. Avila, T. R., A. A. D. S. Machado & A. Bianchini, 2012. Estimation of zooplankton secondary production in estuarine waters: comparison between the enzymatic (chitobiase) method and mathematical models using crustaceans. Journal of Experimental Marine Biology and Ecology.  https://doi.org/10.1016/j.jembe.2012.02.015.CrossRefGoogle Scholar
  7. Balayla, D., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 646: 159–172.CrossRefGoogle Scholar
  8. Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.CrossRefGoogle Scholar
  9. Basu, B. K. & F. R. Pick, 1997. Phytoplankton and zooplankton development in a lowland, temperate river. Journal of Plankton Research 19: 237–253.CrossRefGoogle Scholar
  10. Bayona, Y., A. Roucaute, M. Roucaute, C. Gorzerino, K. Cailleaud, L. Lagadic, A. Bassères & T. Caquet, 2014. Secondary production of freshwater zooplankton communities exposed to a fungicide and to a petroleum distillate in outdoor pond mesocosm. Environmental Toxicology and Chemistry 33: 836–846.CrossRefGoogle Scholar
  11. Benke, A. C., 2010. Secondary production as part of bioenergetic theory—contributions from freshwater benthic science. River Research and Applications.  https://doi.org/10.1002/rra.1290.CrossRefGoogle Scholar
  12. Berman, T. & S. Chava, 1999. Algal growth on organic compounds as nitrogen sources. Journal of Plankton Research.  https://doi.org/10.1093/plankt/21.8.1423.CrossRefGoogle Scholar
  13. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, F. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  14. Brito, S. L., P. M. Maia-Barbosa & R. M. Pinto-Coelho, 2016. Secondary productivity of main microcrustacean species of two tropical reservoirs in Brazil and its relationship with trophic state. Journal of Lymnology.  https://doi.org/10.4081/jlimnol.2016.1267.CrossRefGoogle Scholar
  15. Bonacci, O., Z. Tadić, A. Moržan & I. Radeljak, 2002. Park prirode Kopački rit, Plan upravljanja. Sektorska studija Hidrologija i meteorologija, Osijek.Google Scholar
  16. Burdis, R. M. & J. K. Hirsch, 2017. Crustacean zooplankton dynamics in a natural riverine lake, Upper Mississippi River. Journal of Freshwater Ecology.  https://doi.org/10.1080/02705060.2017.1279080.CrossRefGoogle Scholar
  17. Byrne, B. M., 2013. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming. Routledge, New York.CrossRefGoogle Scholar
  18. Chaparro, G., M. C. Marinone, R. J. Lombardo, M. R. Schiaffino, A. S. Guimarães & I. O’Farrell, 2011. Zooplankton succession during extraordinary drought–flood cycles: a case study in a South American floodplain lake. Limnologica—Ecology and Management of Inland Waters 41: 371–381.  https://doi.org/10.1016/j.limno.2011.04.003.CrossRefGoogle Scholar
  19. Crouch, N. M. A. & R. J. Mason-Gamer, 2018. Structural equation modeling as a tool to investigate correlates of extra-pair paternity in birds. PLoS ONE 13(2): e0193365.  https://doi.org/10.1371/journal.pone.0193365.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dell Inc., 2016. Dell Statistica (data analysis software system), version 13. software.dell.com.Google Scholar
  21. Dickman, E. M., J. M. Newell, M. J. González & M. J. Vanni, 2008. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. PNAS (Proceedings of the National Academy of Sciences of the United State of America) 105: 18408–18412.CrossRefGoogle Scholar
  22. Dolbeth, M., M. Cusson, R. Sousa & M. A. Pardal, 2012. Secondary production as part of bioenergetic theory—contributions from freshwater benthic science. Canadian Journal of Fisheries and Aquatic Sciences 69: 1230–1253.  https://doi.org/10.1139/f2012-050.CrossRefGoogle Scholar
  23. dos Santos Severiano, J., V. L. S. Almeida-Melo, E. M. de Melo-Magalhães, M. C. Bittencourt-Oliveira & A. N. Moura, 2016. Effects of zooplankton and nutrients on phytoplankton: an experimental analysis in a eutrophic tropical reservoir. Marine and Freshwater Research 68: 1061–1069.  https://doi.org/10.1071/MF15393.CrossRefGoogle Scholar
  24. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  25. Dunck, B., D. C. Amaral, U. L. Fernandes, N. F. Santana, T. M. Lopes & L. Rodrigues, 2018. Herbivory effects on the periphytic algal functional diversity in lake ecosystems: an experimental approach. Hydrobiologia.  https://doi.org/10.1007/s10750-018-3587-y.CrossRefGoogle Scholar
  26. Einsle, U., 1993. Crustacea, Copepoda, Calanoida und Cyclopoida. Gustav Fischer Verlag, Berlin.Google Scholar
  27. Escribano, R., E. Bustos-Ríos, P. Hidalgo & C. E. Morales, 2015. Growth and production of the copepod community in the southern area of the Humboldt Current System. Biogeosciences Discussions 12: 3057–3099.CrossRefGoogle Scholar
  28. Fan, Y., J. Chen, G. Shirkey, R. John, S. R. Wu, H. Park & C. Shao, 2016. Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecological Processes 5: 19.  https://doi.org/10.1186/s13717-016-0063-3.CrossRefGoogle Scholar
  29. Furst, D. J., K. T. Aldridge, R. J. Shiel, G. G. Ganf, S. Mills & J. D. Brookes, 2014. Floodplain connectivity facilitates significant export of zooplankton to the main River Murray channel during a flood event. Inland Waters 4: 413–424.CrossRefGoogle Scholar
  30. Galir Balkić, A. & I. Ternjej, 2018. Assessing Cladocera and Copepoda individual disturbance levels in hydrologically dynamic environment. Wetlands Ecology and Management.  https://doi.org/10.1007/s11273-018-9604-0.CrossRefGoogle Scholar
  31. Galir Balkić, A., I. Ternjej & I. Bogut, 2018a. Impact of habitat heterogeneity on zooplankton assembly in a temperate river-floodplain system. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-018-6524-7.CrossRefPubMedGoogle Scholar
  32. Galir Balkić, A., I. Ternjej & M. Špoljar, 2018b. Hydrology driven changes in the rotifer trophic structure and implications for food web interactions. Ecohydrology.  https://doi.org/10.1002/eco.1917.CrossRefGoogle Scholar
  33. Geraldes, A. M. & M.-J. Boavida, 2006. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels. 2006. Aquatic Ecology.  https://doi.org/10.1007/s10452-006-9057-z.CrossRefGoogle Scholar
  34. Gómez, M., I. Martínez, I. Mayo, J. M. Morales, A. Santana & T. T. Packard, 2012. Testing zooplankton secondary production models against Daphnia magna growth. ICES Journal of Marine Science 69: 421–428.  https://doi.org/10.1093/icesjms/fsr193.CrossRefGoogle Scholar
  35. Gonçalves, D. A., S. C. Marques, A. L. Primo, F. Martinho, M. Donas-Bôtto-Bordalo & M. Â. Pardal, 2015. Mesozooplankton biomass and copepod estimated production in a temperate estuary (Mondego estuary): effects of processes operating at different timescales. Zoological Studies.  https://doi.org/10.1186/s40555-015-0135-6.CrossRefGoogle Scholar
  36. Gorokhova, E., M. Lehtiniemi, L. Postel, G. Rubene, C. Amid, J. Lesutiene, L. Uusitalo, S. Strake & N. Demereckiene, 2016. Indicator Properties of baltic zooplankton for classification of environmental status within marine strategy framework directive. PLoS ONE 11(7): e0158326.  https://doi.org/10.1371/journal.pone.0158326.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Górski, K., K. J. Collier, I. C. Duggan, C. M. Taylor & D. P. Hamilton, 2013. Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshwater Biology.  https://doi.org/10.1111/fwb.12144.CrossRefGoogle Scholar
  38. Goździejewska, A., K. Glińska-Lewczuk, K. Obolewski, M. Grzybowski, R. Kujawa, S. Lew & M. Grabowska, 2016. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774: 7–21.CrossRefGoogle Scholar
  39. Grace, J. B., T. M. Anderson, H. Olff & S. M. Scheiner, 2010. On the specification of structural equation models for ecological systems. Ecological Monographs 80: 67–87.CrossRefGoogle Scholar
  40. Hair, J., R. Anderson, R. Tatham & W. Black, 1998. Multivariate Data Analysis, 5th ed. Prentice Hall, Upper Saddle River.Google Scholar
  41. Hart, R. C., 2011. Zooplankton biomass to chlorophyll ratios in relation to trophic status within and between ten South African reservoirs: causal inferences, and implications for biomanipulation. Water SA.  https://doi.org/10.4314/wsa.v37i4.9.CrossRefGoogle Scholar
  42. Havens, K. E. & J. R. Beaver, 2013. Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia 703: 177–178.  https://doi.org/10.1007/s10750-012-1357-9.CrossRefGoogle Scholar
  43. Hillebrand, H., E. T. Borer, M. E. S. Bracken, B. J. Cardinale, J. Cebrian, E. E. Cleland, J. J. Elser, D. S. Gruner, et al., 2009. Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecology Letters 12: 516–527.  https://doi.org/10.1111/j.1461-0248.2009.01304.x.CrossRefPubMedGoogle Scholar
  44. Ismail, A. H. & A. A. M. Adnan, 2016. Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Tropical Life Sciences Research 27: 31–38.  https://doi.org/10.21315/tlsr2016.27.3.5.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jeppesen, E., J. P. Jensen & M. Søndergaard, 2002. Response of phytoplankton, zooplankton, and fish to re-oligotrophication: an 11-year study of 23 Danish lakes. Aquatic Ecosystem Health & Management 5: 31–43.  https://doi.org/10.1080/14634980260199945.CrossRefGoogle Scholar
  46. Jeppesen, E., B. Kronvang, J. E. Olesen, J. Audet, M. Søndergaard, C. C. Hoffmann, H. E. Andersen, T. L. Lauridsen, et al., 2011. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663: 1–21.  https://doi.org/10.1007/s10750-010-0547-6.CrossRefGoogle Scholar
  47. Kamarainen, A. M., F. E. Rowland, R. Biggs & S. R. Carpenter, 2008. Zooplankton and the total phosphorus–chlorophyll a relationship: hierarchical Bayesian analysis of measurement error. Canadian Journal of Fisheries and Aquatic Sciences 65: 2644–2655.  https://doi.org/10.1139/F08-161.CrossRefGoogle Scholar
  48. Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. II. Modifying effects of biotic agents. Polish Journal of Ecology 33: 617–644.Google Scholar
  49. Keckeis, S., C. Baranyi, T. Hein, C. Holarek, P. Riedler & F. Schiemer, 2003. The significance of zooplankton grazing in a floodplain system of the River Danube. Journal of Plankton Research 25: 243–253.CrossRefGoogle Scholar
  50. Kirk, K. L., 1991. Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72: 915–923.CrossRefGoogle Scholar
  51. Kline, R. B., 2010. Principles and Practice of Structural Equation Modeling. Guilford Press, New York.Google Scholar
  52. Kwan, J. L. Y. & W. Chan, 2011. Comparing standardized coefficients in structural equation modeling: a model reparameterization approach. Behavior Research Methods 43: 730–745.CrossRefGoogle Scholar
  53. Lawrence, S. G., D. F. Malley, W. J. Findlay, M. A. MacIver & I. L. Delbaere, 1987. Method for estimating dry weight of freshwater planktonic crustaceans from measures of length and shape. Canadian Journal of Fisheries and Aquatic Sciences 44: 264–274.CrossRefGoogle Scholar
  54. Liu, X., L. Yun-Liang, L. Bao-Gui, Q. Kui-Mei, C. Yu-Wei & G. Jun-Feng, 2016. Cyanobacteria in the complex river-connected Poyang Lake: horizontal distribution and transport. Hydrobiologia.  https://doi.org/10.1007/s10750-015-2536-2.CrossRefGoogle Scholar
  55. Lopes, P. M., L. M. Bini, S. A. J. Declerck, V. F. Farjalla, L. C. G. Vieira, C. C. Bonecker, F. A. Lansac-Toha, F. A. Esteves & R. L. Bozelli, 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE 9(10): e109581.  https://doi.org/10.1371/journal.pone.0109581.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Margaritora, F., 1983. Cladoceri (Crustacea: Cladocera). Guide per il Reconoscimiento delle Specie Animali delle Acque Interne Italiane. Consiglio Nazionale delle Ricerche, Roma.Google Scholar
  57. Maričić, S., 2005. Analyses of one of the rare natural retention in the Middle Danube. In Nachtnebel, H. P. & C. J. Jugović (eds), Proceedings of the Ninth International Symposium on Water Management and Hydraulic Engineering, Vienna, Austria: 383–395.Google Scholar
  58. Martínez, I., M. Gómez & T. T. Packard, 2010. Potential respiration is a better respiratory predictor than biomass in young Artemia salina. Journal of Experimental Marine Biology and Ecology 390: 78–83.  https://doi.org/10.1016/j.jembe.2010.05.011.CrossRefGoogle Scholar
  59. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publishers, Oxford: 228–265.Google Scholar
  60. Mihaljević, M. & F. Stević, 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquatic Ecology 45: 335–349.CrossRefGoogle Scholar
  61. Mihaljević, M., F. Stević, D. Špoljarić & T. Žuna Pfeiffer, 2015. Spatial pattern of phytoplankton based on the morphology-based functional approach along a river-floodplain gradient. River Research and Applications 31: 228–238.CrossRefGoogle Scholar
  62. Miyashita, L. K., M. Melo Júnior & R. M. Lopes, 2009. Estuarine and oceanic influences on copepod abundance and production of a subtropical coastal area. Journal of Plankton Research 31: 815–826.CrossRefGoogle Scholar
  63. Nusair, K. & N. Hua, 2010. Comparative assessment of structural equation modeling and multiple regression research methodologies: e-commerce context. Tourism Management 31: 314–324.CrossRefGoogle Scholar
  64. Obertegger, U., G. Flaim, M. G. Braioni, R. Sommaruga, F. Corradini & A. Borsato, 2007. Water residence time as a driving force of zooplankton structure and succession. Aquatic Sciences 69: 575–583.  https://doi.org/10.1007/s00027-007-0924-z.CrossRefGoogle Scholar
  65. Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Canadian Journal of Fisheries and Aquatic Sciences 41: 1089–1096.  https://doi.org/10.1139/f84-128.CrossRefGoogle Scholar
  66. Palijan, G. & A. Galir Balkić, 2018. Effect of depth on food-web interactions in a thermally stratified floodplain lake following inundation. River Research and Applications.  https://doi.org/10.1002/rra.3262.CrossRefGoogle Scholar
  67. Peršić, V. & J. Horvatić, 2011. Spatial distribution of nutrient limitation in the Danube river floodplain in relation to hydrological connectivity. Wetlands 31: 933–944.CrossRefGoogle Scholar
  68. Sarnelle, O., S. Gustafsson & L.-A. Hansson, 2010. Effects of cyanobacteria on fitness components of the herbivore Daphnia. Journal of Plankton Research 32: 471–477.  https://doi.org/10.1093/plankt/fbp151.CrossRefGoogle Scholar
  69. Schiemer, F., H. Keckeis, W. Reckendorfer & G. Winkler, 2001. The “inshore retention concept” and its significance for large rivers. Archive fur Hydrobiologie 135: 509–516.Google Scholar
  70. Shuter, B. J. & K. K. Ing, 1997. Factors affecting the production of zooplankton in lakes. Canadian Journal of Fisheries and Aquatic Sciences 54: 359–377.CrossRefGoogle Scholar
  71. Smart, M., 2000. World Heritage Nomination. IUCN Technical Evaluation: Kopački rit (Croatia). The World Conservation Union, Cairns.Google Scholar
  72. Sommer, U., F. Sommer, B. Santer, E. Zöllner, K. Jürgens, C. Jamieson, M. Boersma & K. Gocke, 2003. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.  https://doi.org/10.1007/s00442-003-1214-7.CrossRefPubMedGoogle Scholar
  73. Stockwell, J. D. & O. E. Johannsson, 1997. Temperature-dependent allometric models to estimate zooplankton production in temperate freshwater lakes. Canadian Journal of Fisheries and Aquatic Sciences 54: 2350–2360.  https://doi.org/10.1139/f97-141.CrossRefGoogle Scholar
  74. Strickland, J. D. H. & T. R. Parsons, 1968. A practical hand-book of seawater analysis. Fisheries Research Board of Canada Bulletin 167: 1–310.Google Scholar
  75. Tadić, D. & Ž. Vidaček, 1999. Klimatske, hidrološke i pedološke značajke. In Mihaljević, M., D. Getz, Z. Tadić, B. Živanović, D. Gucunski, J. Topić, I. Kalinović & J. Mikuška (eds), Kopački rit—Pregled istraživanja i bibliografija. Hrvatska Akademija, Zagreb: 23–28. (in Croatian).Google Scholar
  76. Tavşanoğlu, Ü. N., M. Šorf, K. Stefanidis, S. Brucet, S. Türkan, H. Agasild, D. L. Baho, U. Scharfenberger, et al., 2017. Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment. Aquatic Ecology 51: 257–273.CrossRefGoogle Scholar
  77. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.Google Scholar
  78. Tõnno, I., H. Agasild, T. Kõiv, R. Freiberg, P. Nõges & T. Nõges, 2016. Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS ONE 11(4): e0154526.  https://doi.org/10.1371/journal.pone.0154526.CrossRefPubMedPubMedCentralGoogle Scholar
  79. UNESCO, 1966. Determinations of Photosynthetic Pigments in Seawater. Report of SCOR. UNESCO, Paris.Google Scholar
  80. Urrutia-Cordero, P., M. K. Ekvall & L.-A. Hansson, 2015. Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshwater Biology.  https://doi.org/10.1111/fwb.12555.CrossRefGoogle Scholar
  81. Vadadi-Fülöp, C., L. Hufnagel, G. Jablonszky & K. Zsuga, 2009. Crustacean plankton abundance in the Danube River and in its side arms in Hungary. Biologia 64: 1184–1195.  https://doi.org/10.2478/s11756-009-0202-8.CrossRefGoogle Scholar
  82. Vander Zanden, M. J. & W. W. Fetzer, 2007. Global patterns of aquatic food chain length. Oikos 116: 1378–1388.  https://doi.org/10.1111/j.2007.0030-1299.16036.x.CrossRefGoogle Scholar
  83. Wang, I. J., R. E. Glor & J. B. Losos, 2013. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters 16: 175–182.  https://doi.org/10.1111/ele.12025. PMID: 23137142.CrossRefPubMedGoogle Scholar
  84. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyJosip Juraj Strossmayer University of OsijekOsijekCroatia
  2. 2.Division of Zoology, Department of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations