Congruence in riverine conditions and associations between native fish and several species of amphibians in a region prone to fish invasions

  • Alberto Maceda-VeigaEmail author
  • Ralph Mac Nally
  • Adolfo de Sostoa
Primary Research Paper


The relationship between fish and amphibians is thought to be antagonistic because of the frequent amphibian extirpations after fish introductions, although some field observations show that amphibians and fish often co-occur in rivers. Here, we used surveys in north-eastern Spain (99,700 km2, 15 river catchments, N = 535 sites) to identify the most frequent fish–amphibian associations and the riverine conditions that might concurrently promote the diversity of native fish and of five widely distributed amphibian species. Overall, there was little congruence between native fish and amphibian-diversity measures (species richness and the Shannon, Simpson and Pielou diversity indices). Different riverine conditions appeared to be important for the two vertebrate groups. Alien fish richness, which was highly correlated with alien fish abundance, was negatively associated with amphibian richness and Shannon diversity but was positively associated with native fish richness. River water depth was negatively associated with amphibian occurrence. While our snap-shot surveys may be a transitional stage in the fish–amphibian relationships, we found that some widely distributed amphibian species co-occur with fish in rivers in north-eastern Spain. Small rivers, such as tributaries often have the most intact fish assemblages, and probably are the best locations to explore fish–amphibian associations in greater depth.


Alien species Diversity patterns Amphibians Fish Rivers Water depth Hydromorphological alterations 



We thank three anonymous reviewers and the associated editor Katya Kovalenko for their helpful suggestions. We are grateful to all people who assisted in the field and Mari Piñero-Rodríguez for acting as catalyst for this manuscript. River surveys were funded by Natural Parks (Collserola and Sant Llorenç del Munt i Serra de l’Obac), the town of Sabadell and the Spanish water authorities ‘Agència Catalana de l’Aigua’ (A.C.A.) and ‘Confederación Hidrográfica del Ebro’ (C.H.E.).

Supplementary material

10750_2019_3945_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 46 kb)


  1. Allen, A. P., T. R. Whittier, P. R. Kaufmann, D. P. Larsen, R. J. O’Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurt, A. T. Herlihy & S. G. Paulsen, 1999. Concordance of taxonomic richness patterns across multiple assemblages in lakes of the northeastern United States. Canadian Journal of Fisheries and Aquatic Sciences 56: 739–754.CrossRefGoogle Scholar
  2. Alroy, J., 2015. Current extinction rates of reptiles and amphibians. Proceedings of the National Academy of Sciences USA 112: 13003–13008.CrossRefGoogle Scholar
  3. Aparicio, E. & A. de Sostoa, 1999. Pattern of movements of adult Barbus haasi in a small Mediterranean stream. Journal of Fish Biology 55: 1086–1095.CrossRefGoogle Scholar
  4. Aparicio, E., M. J. Vargas, J. M. Olmo & A. de Sostoa, 2000. Decline of native freshwater fishes in a Mediterranean watershed on the Iberian Peninsula: a quantitative assessment. Environmental Biology of Fishes 59: 11–19.CrossRefGoogle Scholar
  5. Bajer, P. G., G. Sullivan & P. W. Sorensen, 2009. Effects of a rapidly increasing population of common carp on vegetative cover and waterfowl in a recently restored Midwestern shallow lake. Hydrobiologia 632: 235–245.CrossRefGoogle Scholar
  6. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. US Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  7. Barton, K., 2013. MuMIn: multi-model inference. R package ver. 1(13): 6.Google Scholar
  8. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  9. Bivand, R., M. Anselin, L. Anselin, R. Assuncao, O. Berke & A. Bernat, 2011. spdep: Spatial dependence: weighting schemes, statistics and models.Google Scholar
  10. Butchart, S. H., M. Walpole, B. Collen, A. Van Strien, J. P. Scharlemann, R. E. Almond, et al., 2010. Global biodiversity: indicators of recent declines. Science 328: 1164.CrossRefGoogle Scholar
  11. Camargo, J. A. & Á. Alonso, 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International 32: 831–849.CrossRefGoogle Scholar
  12. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  13. Clarke, A., R. Mac Nally, N. Bond & P. S. Lake, 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53: 1707–1721.CrossRefGoogle Scholar
  14. Colin, N., A. Maceda-Veiga, N. Flor-Arnau, J. Mora, P. Fortuño, C. Vieira, N. Prat, J. Cambra & A. de Sostoa, 2016. Ecological impact and recovery of a Mediterranean river after receiving the effluent from a textile dyeing industry. Ecotoxicology and Environmental Safety 132: 295–303.CrossRefGoogle Scholar
  15. Colwell, R. K. & J. A. Coddington, 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London Series B 345: 101–118.CrossRefGoogle Scholar
  16. de Vries, W. & A. Marco, 2017. The importance of fluvial habitats for amphibian conservation in the Mediterranean climate. Basic and Applied Herpetology 31: 5–16.Google Scholar
  17. Denoël, M., G. Dzukic & M. L. Kalezic, 2005. Effects of widespread fish introductions on paedomorphic newts in Europe. Conservation Biology 19: 162–170.CrossRefGoogle Scholar
  18. Diehl, S., 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.CrossRefGoogle Scholar
  19. Dirzo, R., H. S. Young, M. Galetti, G. Ceballos, N. J. Isaac & B. Collen, 2014. Defaunation in the Anthropocene. Science 345: 401–406.CrossRefGoogle Scholar
  20. Doadrio, I. (ed.), 2011. Ictiofauna española. Bases para su seguimiento. Ministerio de Agricultura y Pesca, Madrid. (In Spanish).Google Scholar
  21. Egea-Serrano, A., R. A. Relyea, M. Tejedo & M. Torralva, 2012. Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecology and Evolution 2: 1382–1397.CrossRefGoogle Scholar
  22. Fox, J., S. Weisberg, D. Adler, D. Bates, G. Baud-Bovy, S. Ellison, et al., 2012. Package ‘car’. R Foundation for Statistical Computing, Vienna.Google Scholar
  23. Gaston, K. J., 1996. Species richness: measure and measurement. In Gaston, K. J. (ed.), Biodiversity, a biology of numbers and difference. Blackwell, Cambridge: 77–113.Google Scholar
  24. Gaston, K. J., 2000. Global patterns in biodiversity. Nature 405(6783): 220.CrossRefGoogle Scholar
  25. Gillespie, G. R., 2001. The role of introduced trout in the decline of the spotted tree frog (Litoria spenceri) in south-eastern Australia. Biological Conservation 100: 187–198.CrossRefGoogle Scholar
  26. Guareschi, S., P. Abellán, A. Laini, A. J. Green, J. A. Sánchez-Zapata, J. Velasco & A. Millán, 2015. Cross-taxon congruence in wetlands: assessing the value of waterbirds as surrogates of macroinvertebrate biodiversity in Mediterranean Ramsar sites. Ecological Indicators 49: 204–215.CrossRefGoogle Scholar
  27. Hartel, T., S. Nemes, D. Cogălniceanu, K. Öllerer, O. Schweiger, C. I. Moga & L. Demeter, 2007. The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia 583: 173.CrossRefGoogle Scholar
  28. Hecnar, S. J. & R. T. M‘Closkey, 1997. The effects of predatory fish on amphibian species richness and distribution. Biological Conservation 79: 123–131.CrossRefGoogle Scholar
  29. Heino, J., 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators 10: 112–117.CrossRefGoogle Scholar
  30. Heino, J., R. Paavola, R. Virtanen & T. Muotka, 2005. Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodiversity & Conservation 14: 415–428.CrossRefGoogle Scholar
  31. Kats, L. B. & R. P. Ferrer, 2003. Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Diversity and Distributions 9: 99–110.CrossRefGoogle Scholar
  32. Kefford, B. J., G. L. Hickey, A. Gasith, E. Ben-David, J. E. Dunlop, C. G. Palmer, K. Allan, S. C. Choy & C. Piscart, 2012. Global scale variation in the salinity sensitivity of riverine macroinvertebrates: eastern Australia, France,Israel and South Africa. PLoS ONE 7: e35224.CrossRefGoogle Scholar
  33. Llorente, G. A., A. Montori, X. Santos & M. A. Carretero, 1995. Atlas dels amfibis i rèptils de Catalunya i Andorra. El Brau, Figueres.Google Scholar
  34. Mac Nally, R., A. F. Bennett, G. W. Brown, L. F. Lumsden, A. Yen, S. Hinkley, P. Lillywhite & D. Ward, 2002. How well do ecosystem-based planning units represent different components of biodiversity? Ecological Applications 12: 900–912.CrossRefGoogle Scholar
  35. Maceda-Veiga, A., 2013. Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Reviews in Fish Biology and Fisheries 23: 1–22.CrossRefGoogle Scholar
  36. Maceda-Veiga, A., A. Baselga, R. Sousa, M. Vilà, I. Doadrio & A. de Sostoa, 2017. Fine-scale determinants of conservation value of river reaches in a hotspot of native and non-native species diversity. Science of the Total Environment 574: 455–466.CrossRefGoogle Scholar
  37. Maceda-Veiga, A., R. Mac Nally & A. de Sostoa, 2018. Water-quality impacts in semi-arid regions: can natural ‘green filters’ mitigate adverse effects on fish assemblages? Water Research 144: 628–641.CrossRefGoogle Scholar
  38. Magalhães, M. F., P. Beja, I. J. Schlosser & M. J. Collares-Pereira, 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshwater Biology 52: 1494–1510.CrossRefGoogle Scholar
  39. Manenti, R. & R. Pennati, 2016. Environmental factors associated with amphibian breeding in streams and springs: effects of habitat and fish occurrence. Amphibia-Reptilia 37: 237–242.CrossRefGoogle Scholar
  40. Manteifel, Y. B. & A. N. Reshetnikov, 2002. Avoidance of noxious tadpole prey by fish and invertebrate predators: adaptivity of a chemical defence may depend on predator feeding habits. Archiv fur Hydrobiologie 153: 657–668.CrossRefGoogle Scholar
  41. Moreno, C. E., 2001. Métodos para medir la biodiversidad. M&T–Manuales y Tesis SEA, vol. 1. Zaragoza, 84 pp (In Spanish).Google Scholar
  42. Munné, A., N. Prat, C. Sola, N. Bonada & M. Rieradevall, 2003. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 147–163.CrossRefGoogle Scholar
  43. Noga, E. J., 2011. Fish disease: diagnosis and treatment. Wiley, Hoboken.Google Scholar
  44. Parker, I. M., D. Simberloff, W. M. Lonsdale, K. Goodell, M. Wonham, P. M. Kareiva, M. H. Williamson, B. Von Holle, P. B. Moyle, J. E. Byers & L. Goldwasser, 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1: 3–19.CrossRefGoogle Scholar
  45. Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131–144.CrossRefGoogle Scholar
  46. Pielou, E. C., 1975. Ecological diversity. Wiley, New York.Google Scholar
  47. Polo-Cavia, N., P. Burraco & I. Gomez-Mestre, 2016. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition. Aquatic Toxicology 172: 30–35.CrossRefGoogle Scholar
  48. Porej, D. & T. E. Hetherington, 2005. Designing wetlands for amphibians: the importance of predatory fish and shallow littoral zones in structuring of amphibian communities. Wetlands Ecology and Management 13: 445–455.CrossRefGoogle Scholar
  49. Pracheil, B. M., P. B. McIntyre & J. D. Lyons, 2013. Enhancing conservation of large-river biodiversity by accounting for tributaries. Frontiers in Ecology and the Environment 11: 124–128.CrossRefGoogle Scholar
  50. R Core Team, 2016. R: a language and environment for statistical computing ( R Foundation for Statistical Computing, Vienna, Austria.
  51. Ricciardi, A., T. M. Blackburn, J. T. Carlton, J. T. Dick, P. E. Hulme, J. C. Iacarella, J. M. Jeschke, A. M. Leibhold, J. L. Lockwood, H. J. MacIsaac, P. Pysek, D. M. Richardson, G. M. Ruiz, D. Simberloff, W. J. Sutherland, D. A. Wardle & D. C. Aldrige, 2017. Invasion science: a horizon scan of emerging challenges and opportunities. Trends in Ecology & Evolution 32: 464–474.CrossRefGoogle Scholar
  52. Richter-Boix, A., G. A. Llorente & A. Montori, 2006. Breeding phenology of an amphibian community in a Mediterranean area. Amphibia-Reptilia 27: 549–559.CrossRefGoogle Scholar
  53. Russildi, G., V. Arroyo-Rodríguez, O. Hernández-Ordóñez, E. Pineda & V. H. Reynoso, 2016. Species-and community-level responses to habitat spatial changes in fragmented rainforests: assessing compensatory dynamics in amphibians and reptiles. Biodiversity and Conservation 25: 375–392.CrossRefGoogle Scholar
  54. Shannon, C. E., 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423.CrossRefGoogle Scholar
  55. Sillero, N., J. A. Campos, C. Bonardi, R. Corti, P. Creemers, J. Crochet, M. Crnobrnja Isailovic, G. F. Denoël, J. Ficetola, S. Gonçalves, P. Kuzmin, P. Lymberakis, A. de Pous, R. Rodríguez, J. Sindaco, B. Speybroeck, B. Toxopeus, D. R. Vieites & M. Vences, 2014. Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia-Reptilia 35: 1–31.CrossRefGoogle Scholar
  56. Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
  57. Spellerberg, I. F., 1991. Monitoring ecological change. Cambridge University Press, Cambridge: 334.Google Scholar
  58. Strahler, A. N., 1964. Quantitative geomorphology of drainage basin and channel networks. Handbook of Applied Hydrology. McGraw-Hill, New York.Google Scholar
  59. Tisseuil, C., J. F. Cornu, O. Beauchard, S. Brosse, W. Darwall, R. Holland, B. Hugueny, P. A. Tedesco & T. Oberdorff, 2013. Global diversity patterns and cross-taxa convergence in freshwater systems. Journal of Animal Ecology 82: 365–376.CrossRefGoogle Scholar
  60. Tockner, K., U. Uehlinger & C. T. Robinson, 2009. Rivers of Europe. Academic Press, Cambridge.Google Scholar
  61. Townsend, C. R., S. S. Uhlmann & C. D. Matthaei, 2008. Individual and combined responses of stream ecosystems to multiple stressors. Journal of Applied Ecology 45: 1810–1819.CrossRefGoogle Scholar
  62. Valiente-Banuet, A., M. A. Aizen, J. M. Alcántara, J. Arroyo, A. Cocucci, M. Galetti, M. B. García, D. García, J. M. Gómez, P. Jordano, R. Mendel, L. Navarro, J. R. Obeso, R. Oviedo, N. Ramírez, P. J. Rey, A. Traveset, M. Verdú & R. Zamora, 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology 29: 299–307.CrossRefGoogle Scholar
  63. Velghe, K. & I. Gregory-Eaves, 2013. Body size is a significant predictor of congruency in species richness patterns: a meta-analysis of aquatic studies. PLoS ONE 8: e57019.CrossRefGoogle Scholar
  64. Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, et al., 2010. Global threats to human water security and river biodiversity. Nature 467: 555.CrossRefGoogle Scholar
  65. Waldron, A., D. C. Miller, D. Redding, A. Mooers, T. S. Kuhn, N. Nibbelink & J. L. Gittleman, 2017. Reductions in global biodiversity loss predicted from conservation spending. Nature 551: 364.CrossRefGoogle Scholar
  66. Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Integrative EcologyEstación Biológica de Doñana (EBD-CSIC)SevilleSpain
  2. 2.Department of Evolutionary Biology, Ecology and Environmental Sciences & Institute of Research in Biodiversity (IRBio-UB)Universitat de BarcelonaBarcelonaSpain
  3. 3.Institute for Applied EcologyUniversity of CanberraBruceAustralia

Personalised recommendations