Advertisement

Effect of light intensity and substrate type on siscowet lake trout (Salvelinus namaycush siscowet) predation on deepwater sculpin (Myoxocephalus thompsonii)

  • Trevor D. KeylerEmail author
  • Thomas R. Hrabik
  • Allen F. Mensinger
  • Loranzie S. Rogers
  • Owen T. Gorman
CHARR III

Abstract

Foraging characteristics of siscowet lake trout (Salvelinus namaycush siscowet) on deepwater sculpin (Myoxocephalus thompsonii) were studied under ecologically relevant downwelling light intensities (9.0 × 108 to 1.62 × 1011 photons m−2 s−1) and emission spectrum (500–510 nm) on varying substrates (gravel, sand, and black fabric). Siscowet reaction distance within our trials increased with light intensity up to 6.0 × 109 photons m−2 s−1, after which reaction distance remained constant with additional increases in light intensity following the Michaelis–Menten saturation function. Reaction distances were not affected by substrate type under any light intensity. The number of prey captures also increased with increasing light intensity, with most orientations toward prey occurring within the siscowet’s forward sector (± 0°–60°, where 0° represents the tip of the siscowet rostrum). Finally, the overall probability of prey capture was positively related to reaction distance at each light intensity. Results suggest that siscowet can visually forage on benthic prey at great depth in Lake Superior, and reaction distance (≤ 27 cm) to sculpin may not diminish until depths exceed 200 m (6.00 × 109 photons m−2 s−1).

Keywords

Lake Superior Reaction distance Vision Crypsis Pelagic 

Notes

Acknowledgements

For assistance with collection of deepwater fishes, the authors thank the crew of the RV Kiyi. Funding for this project was provided by the US Geological Survey, Lake Superior Biological Station, University of Minnesota Duluth Biology Department, and National Science Foundation Grants IOS 1354745 and DOB 1359230 (AFM). The authors are grateful for the help and support from I. Harding, M. Pawlowski, J. Dobosenski, Minnesota Sea Grant, and the McNair Scholars Program at the University of Wisconsin-Superior. A special thanks to M. Joyce for help with statistical aspects of the paper, B. Matthias for his helpful editorial comments, and R. Mahling for his modeling expertise. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

  1. Ahrenstorff, T. D., T. R. Hrabik, J. D. Stockwell, D. L. Yule & G. G. Sass, 2011. Seasonally dynamic diel vertical migrations of Mysis diluviana, coregonine fishes, and siscowet lake trout in the pelagia of western Lake Superior. Transactions of the American Fisheries Society 140: 1504–1520.CrossRefGoogle Scholar
  2. Aksnes, D. L. & A. C. W. Utne, 1997. A revised model of visual range in fish. Sarsia 82: 137–147.CrossRefGoogle Scholar
  3. Beauchamp, D. A., C. M. Baldwin, J. L. Vogel & C. P. Gubala, 1999. Estimating diel, depth-specific foraging opportunities with a visual encounter rate model for pelagic piscivores. Canadian Journal of Fisheries and Aquatic Sciences 56: 128–139.CrossRefGoogle Scholar
  4. Beauchamp, D. A., A. D. Cross, J. L. Armstrong, K. W. Myers, J. H. Moss, J. L. Boldt & L. J. Haldorson, 2007. Bioenergetic responses by Pacific salmon to climate and ecosystem variation. North Pacific Anadromous Fish Commission Bulletin 4: 257–269.Google Scholar
  5. Bond, C. E., 1996. Biology of Fishes. Saunders College Publishing, Fort Worth.Google Scholar
  6. Boscarino, B. T., L. G. Rudstam, J. Tirabassi, J. Janssen & E. R. Loew, 2010. Light effects on alewife-mysid interactions in Lake Ontario: a combined sensory physiology, behavioral, and spatial approach. Limnology and Oceanography 55: 2061–2072.CrossRefGoogle Scholar
  7. Brandt, S. B. & S. P. Madon, 1986. Rainbow smelt (Osmerus mordax) predation on slimy sculpin (Cottus cognatus) in Lake Ontario. Journal of Great Lakes Research 12: 322–325.CrossRefGoogle Scholar
  8. Carmichael, G. J., J. R. Tomasso, B. A. Simco & K. B. Davis, 1984. Characterization and alleviation of stress associated with hauling largemouth bass. Transactions of the American Fisheries Society 113: 778–785.CrossRefGoogle Scholar
  9. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.CrossRefGoogle Scholar
  10. Cerri, R. D. & D. F. Fraser, 1983. Predation and risk in foraging minnows: balancing conflicting demands. The American Naturalist 121: 552–561.CrossRefGoogle Scholar
  11. Crowder, L. B., W. E. Cooper, 1979. Structural complexity and fish–prey interactions in ponds: a point of view. In: Response of Fish to Habitat Structure in Standing Water. American Fisheries Society, North Central Division, Special Publication 6: 2–10.Google Scholar
  12. Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.CrossRefGoogle Scholar
  13. Crowder, L. B., J. J. Magnuson & S. B. Brandt, 1981. Complementarity in the use of food and thermal habitat by Lake Michigan fishes. Canadian Journal of Fisheries and Aquatic Sciences 38: 662–668.CrossRefGoogle Scholar
  14. Cramer, C. E., K. R. Lykke, J. T. Woodward & A. W. Smith, 2013. Precise measurement of lunar spectral irradiance at visible wavelengths. Journal of Research of the National Institute of Standards and Technology 118: 396.CrossRefGoogle Scholar
  15. De Robertis, A., C. H. Ryer, A. Veloza & R. D. Brodeur, 2003. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences 60: 1517–1526.CrossRefGoogle Scholar
  16. Dill, L. M., 1983. Adaptive flexibility in the foraging behavior of fishes. Canadian Journal of Fisheries and Aquatic Sciences 40: 398–408.CrossRefGoogle Scholar
  17. Dill, L. M. & A. H. Fraser, 1984. Risk of predation and the feeding behavior of juvenile coho salmon (Oncorhynchus kisutch). Behavioral Ecology and Sociobiology 16: 65–71.CrossRefGoogle Scholar
  18. Duke-Elder, S., 1958. A Century of International Ophthalmology, 18571957. Kimpton.Google Scholar
  19. Eggers, D. M., 1977. The nature of prey selection by planktivorous fish. Ecology 58: 46–59.CrossRefGoogle Scholar
  20. Ellis, T., B. R. Howell & R. N. Hughes, 1997. The cryptic responses of hatchery-reared sole to a natural sand substratum. Journal of Fish Biology 51: 389–401.CrossRefGoogle Scholar
  21. Fahnenstiel, G. L., C. L. Schelske & R. A. Moll, 1984. In situ quantum efficiency of Lake Superior phytoplankton. Journal of Great Lakes Research 10: 399–406.CrossRefGoogle Scholar
  22. Gorman, O.T., & T. D. Keyler, 2016. A Hyperbaric Holding & Transport Vessel for Collection of Deepwater Fishes for Research and Broodstock Development. U.S. Geological Survey.Google Scholar
  23. Gorman, O. T., D. L. Yule & J. D. Stockwell, 2012a. Habitat use by fishes of Lake Superior. I. Diel patterns of habitat use in nearshore and offshore waters of the Apostle Islands region. Aquatic Ecosystem Health & Management 15: 333–354.CrossRefGoogle Scholar
  24. Gorman, O. T., D. L. Yule & J. D. Stockwell, 2012b. Habitat use by fishes of Lake Superior. II. Consequences of diel habitat use for habitat linkages and habitat coupling in nearshore and offshore waters. Aquatic Ecosystem Health & Management 15: 355–368.CrossRefGoogle Scholar
  25. Hansen, A. G., D. A. Beauchamp & E. R. Schoen, 2013. Visual prey detection responses of piscivorous trout and salmon: effects of light, turbidity, and prey size. Transactions of the American Fisheries Society 142: 854–867.CrossRefGoogle Scholar
  26. Harrington, K. A., T. R. Hrabik & A. F. Mensinger, 2015. Visual sensitivity of deepwater fishes in Lake Superior. PLoS ONE 10: e0116173.CrossRefGoogle Scholar
  27. Harvey, C. J., S. T. Schram & J. F. Kitchell, 2003. Trophic relationships among lean and siscowet lake trout in Lake Superior. Transactions of the American Fisheries Society 132: 219–228.CrossRefGoogle Scholar
  28. Houtman, R. & L. M. Dill, 1994. The influence of substrate color on the alarm response of tidepool sculpins (Oligocottus maculosus; Pisces, Cottidae). Ethology 96: 147–154.CrossRefGoogle Scholar
  29. Howick, G. L. & W. J. O’Brien, 1983. Piscivorous feeding behavior of largemouth bass: an experimental analysis. Transactions of the American Fisheries Society 112: 508–516.CrossRefGoogle Scholar
  30. Hrabik, T. R., O. P. Jensen, S. J. D. Martell, C. J. Walters & J. F. Kitchell, 2006. Diel vertical migration in the Lake Superior pelagic community. I. Changes in vertical migration of coregonids in response to varying predation risk. Canadian Journal of Fisheries and Aquatic Sciences 63: 2286–2295.CrossRefGoogle Scholar
  31. Hutchinson, G. E., 1957. A Treatise on Limnology. Geology, Physics, and Chemistry, Vol. 1. Wiley, New York.Google Scholar
  32. Jensen, O. P., T. R. Hrabik, S. J. Martell, C. J. Walters & J. F. Kitchell, 2006. Diel vertical migration in the Lake Superior pelagic community. II. Modeling trade-offs at an intermediate trophic level. Canadian Journal of Fisheries and Aquatic Sciences 63: 2296–2307.CrossRefGoogle Scholar
  33. Jerome, J. H., R. P. Bukata & J. E. Bruton, 1983. Spectral Attenuation and Irradiance in the Laurentian Great Lakes. Journal of Great Lakes Research 9: 60–68.CrossRefGoogle Scholar
  34. Johnsen, S., 2012. The Optics of Life: A Biologist’s Guide to Light. Princeton University Press, New Jersey.CrossRefGoogle Scholar
  35. Keyler, T. D., T. R. Hrabik, C. L. Austin, O. T. Gorman & A. F. Mensinger, 2015. Foraging mechanisms of siscowet lake trout (Salvelinus namaycush siscowet) on pelagic prey. Journal of Great Lakes Research 41: 1162–1171.CrossRefGoogle Scholar
  36. Kerfoot, W. C. & A. Sih, 1987. Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover.Google Scholar
  37. Land, M. F. & D. E. Nilsson, 2012. Animal Eyes. Oxford University Press, Oxford.CrossRefGoogle Scholar
  38. Mazur, M. M. & D. A. Beauchamp, 2003. A comparison of visual prey detection among species of piscivorous salmonids: effects of light and low turbidities. Environmental Biology of Fishes 67: 397–405.CrossRefGoogle Scholar
  39. Miner, J. G. & R. A. Stein, 1996. Detection of predators and habitat choice by small bluegills: effects of turbidity and alternative prey. Transactions of the American Fisheries Society 125: 97–103.CrossRefGoogle Scholar
  40. Mittelbach, G. G., 1981. Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62: 1370–1386.CrossRefGoogle Scholar
  41. Muntz, W. R., 1990. Stimulus, environment and vision in fishes. The visual System of Fish. Springer, Dordrecht.Google Scholar
  42. Munz, F. W. & W. N. McFarland, 1965. A suggested hereditary mechanism for visual pigments of chars (Salvelinus spp.). Nature 206: 955.CrossRefGoogle Scholar
  43. Munz, F. W. & W. N. McFarland, 1977. Evolutionary adaptations of fishes to the photic environment. The Visual System in Vertebrates. Springer, Berlin.Google Scholar
  44. O’Neill, R. V., D. L. DeAngelis, J. J. Pastor, B. J. Jackson & W. M. Post, 1989. Multiple nutrient limitations in ecological models. Ecological Modelling 46: 147–163.CrossRefGoogle Scholar
  45. Palmer, L. M., M. Deffenbaugh & A. F. Mensinger, 2005. Sensitivity of the anterior lateral line to natural stimuli in the oyster toadfish, Opsanus tau (Linnaeus). Journal of Experimental Biology 208: 3441–3450.CrossRefGoogle Scholar
  46. Pratt, T. C., O. T. Gorman, W. P. Mattes, J. T. Myers, H. R. Quinlan, D. R. Schreiner, M. J. Seider, S. P. Sitar, D. L. Yule, & P. M. Yurista, 2016. The state of Lake Superior in 2011 [online]. Available from: http://www.glfc.org/pubs/SpecialPubs/Sp16_01.pdf [accessed 3 November 2017].
  47. Price, N. N. & A. F. Mensinger, 1999. Predator-prey interactions of juvenile toadfish, Opsanus tau. The Biological Bulletin 197: 246–247.CrossRefGoogle Scholar
  48. Prejs, A., 1987. Risk of predation and feeding rate in tropical freshwater fishes: field evidence. Oecologia 72: 259–262.CrossRefGoogle Scholar
  49. Richmond, H. E., T. R. Hrabik & A. F. Mensinger, 2004. Light intensity, prey detection and foraging mechanisms of age-0 year yellow perch. Journal of Fish Biology 65: 195–205.CrossRefGoogle Scholar
  50. Roth, B. M., K. A. Rose, L. P. Rozas & T. J. Minello, 2008. Relative influence of habitat fragmentation and inundation on brown shrimp Farfantepenaeus aztecus production in northern Gulf of Mexico salt marshes. Marine Ecology Progress Series 359: 185–202.CrossRefGoogle Scholar
  51. Ruxton, G. D., T. N. Sherratt & M. P. Speed, 2004. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, Oxford.CrossRefGoogle Scholar
  52. Sass, G. G., C. M. Gille, J. T. Hinke & J. F. Kitchell, 2006. Whole-lake influences of littoral structural complexity and prey body morphology on fish predator–prey interactions. Ecology of Freshwater Fish 15: 301–308.CrossRefGoogle Scholar
  53. Scott, W. B. & E. J. Crossman, 1973. Freshwater fishes of Canada. Journal of the Fisheries Research Board of Canada 184: 966.Google Scholar
  54. Selegby, J. H., & M. H. Hoff, 1996. Seasonal Bathymetric Distribution of 16 Fishes in Lake Superior 1958-75 (No. BSR-7). National Biological Service, Ashland WI, Great Lakes Science Center.Google Scholar
  55. Sierszen, M. E., T. R. Hrabik, J. D. Stockwell, A. M. Cotter, J. C. Hoffman & D. L. Yule, 2014. Depth gradients in food-web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem. Freshwater Biology 59: 2122–2136.CrossRefGoogle Scholar
  56. Sih, A., 1986. Antipredator responses and the perception of danger by mosquito larvae. Ecology 67: 434–441.CrossRefGoogle Scholar
  57. Sitar, S. P., H. M. Morales, M. T. Mata, B. B. Bastar, D. M. Dupras, G. D. Kleaver & K. D. Rathbun, 2008. Survey of Siscowet Lake Trout at Their Maximum Depth in Lake Superior. Journal of Great Lakes Research 34: 276–286.CrossRefGoogle Scholar
  58. Sowersby, W., R. M. Thompson & B. B. M. Wong, 2015. Invasive predator influences habitat preferences in a freshwater fish. Environmental Biology of Fishes 99: 187–193.CrossRefGoogle Scholar
  59. Stevens, M. & I. C. Cuthill, 2006. Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society B 273: 2141–2147.CrossRefGoogle Scholar
  60. Stockwell, J. D., T. R. Hrabik, O. P. Jensen, D. L. Yule & M. Balge, 2010. Empirical evaluation of predator-driven diel vertical migration in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences 67: 473–485.CrossRefGoogle Scholar
  61. van der Meer, H. J. & G. C. Anker, 1984. Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Cichlidae, Teleostei). Netherlands Journal of Zoology 34: 197–209.CrossRefGoogle Scholar
  62. Virostek, K., & B. Franckowiak, 2014. What can you see in the dark? The effects of contrast, light, and age on contrast sensitivity in low light. Journal of Emerging Investigators 1–4.Google Scholar
  63. Vogel, J. L. & D. A. Beauchamp, 1999. Effects of light, prey size, and turbidity on reaction distances of lake trout (Salvelinus namaycush) to salmonid prey. Canadian Journal of Fisheries and Aquatic Sciences 56: 1293–1297.CrossRefGoogle Scholar
  64. Ware, D. M., 1973. Risk of epibenthic prey to predation by rainbow trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 30: 787–797.CrossRefGoogle Scholar
  65. Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30 (5):377–392.CrossRefGoogle Scholar
  66. Werner, E. E. & D. J. Hall, 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052.CrossRefGoogle Scholar
  67. Werner, E. E. & D. J. Hall, 1979. Foraging efficiency and habitat switching in competing sunfishes. Ecology 60: 256–264.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biology DepartmentCollege of St. Benedict/St. John’s UniversityCollegevilleUSA
  2. 2.Biology DepartmentUniversity of MinnesotaDuluthUSA
  3. 3.U.S. Geological SurveyAshlandUSA

Personalised recommendations