Advertisement

Environmental drivers of mollusc assemblage diversity in a system of lowland lentic habitats

  • Erika LorencováEmail author
  • Michal Horsák
Primary Research Paper
  • 62 Downloads

Abstract

Freshwater mollusc diversity has repeatedly been found to peak in lowland stagnant waters, which are highly exposed to human-made degradation and the spread of non-native species. Despite the increasing loss of these habitats, little is known about the main predictors of their mollusc diversity patterns. Therefore, we aimed to determine the environmental drivers of mollusc assemblage variation between and within sites by sampling 62 water bodies in the Dyje River floodplain (south-eastern Czechia). We measured 14 environmental variables, categorized as site-specific or plot-specific. Species richness and abundances were analysed by GLM and GEE; species compositional variance was assessed by NMDS and db-RDA ordinations. Mollusc species richness, ranging between 0 and 15 species per site, and abundance sharply decreased towards high trophy sites, with the chlorophyll-a concentration and water pH highly correlated with species counts. Species compositional variation was driven mainly by water trophy and the quality of organic detritus. Site heterogeneity turned out to significantly control local assemblages of molluscs, while the presence of individual species seemed to be filtered by site trophy and the shoreline length. Thus, to maintain high regional diversity of aquatic molluscs in lowland agricultural landscapes, the presence of low trophy sites seems to be essential.

Keywords

Aquatic molluscs Diversity patterns Agriculture land Lowland landscape Site heterogeneity Connectivity 

Notes

Acknowledgements

Our thanks go to Petr Dvořák, Jana Petruželová, Libor Bláha, Vojtěch Kaska, Klára Dojczarová, Nicole Schicková, Jan Balák and Klára Němečková for their help in the field. Eliška Maršálková kindly helped with the measurements of some water variables, Jan Sychra commented on the sampling design, and Veronika Horsáková made valuable changes to the first draft. The research was supported by the institutional support of the Masaryk University and by the Czech Science Foundation (P505-16-03881S).

Supplementary material

10750_2019_3940_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 kb)
10750_2019_3940_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 kb)

References

  1. Beaujean, A. A., 2012. BaylorEdPsych: r package for Baylor University Educational Psychology Quantitative Courses. R package version 0.5. http://CRAN.R-project.org/package=BaylorEdPsych.
  2. Beran, L., 2013. Freshwater molluscs of the Dyje (Thaya) River and its tributaries - the role of these water bodies in expansion of alien species and as a refuge for endangered gastropods and bivalves. Folia Malacologica 21: 143–160.CrossRefGoogle Scholar
  3. Beran, L. & M. Horsák, 1998. Aquatic molluscs Gastropoda, Bivalvia of the Dolnomoravský úval lowland, Czech Republic. Acta Societatis Zoologicae Bohemicae 62: 7–23.Google Scholar
  4. Beran, L., L. Juřičková & M. Horsák, 2005. Mollusca-měkkýši. Červený seznam ohrožených druhů České republiky. Bezobratlí. Agentura ochrany přírody a krajiny ČR, Praha, pp. 69–74. (In Czech).Google Scholar
  5. Bódis, E., B. Tóth & R. Sousa, 2016. Freshwater mollusc assemblages and habitat associations in the Danube River drainage, Hungary. Aquatic Conservation 26: 319–332.CrossRefGoogle Scholar
  6. Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  7. Brönmark, C., 1985. Freshwater snail diversity: effects of pond area, habitat heterogeneity and isolation. Oecologia 67: 127–131.CrossRefGoogle Scholar
  8. Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.CrossRefGoogle Scholar
  9. Daldorph, P. W. G. & J. D. Thomas, 1991. The effect of nutrient enrichment on a freshwater community dominated by macrophytes and molluscs and its relevance to snail control. Journal of Applied Ecology 28: 685–702.CrossRefGoogle Scholar
  10. Dillon, R. T., 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  11. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.CrossRefGoogle Scholar
  12. ESRI, 2013. ArcGIS 10.2. Environmental Systems Research Institute. Redlands.Google Scholar
  13. Glöer, P., C. Meier-Brook & O. Ostermann, 2003. Süßwassermollusken. Deutscher Jugendbund für Naturbeoachung, Hamburg.Google Scholar
  14. Hardin, J. W. & J. M. Hilbe, 2003. Generalized Estimating Equations. Chapman & Hall/CRC, Boca Raton: 222.Google Scholar
  15. Harrell Jr, F. E. & C. Dupont, 2018. Hmisc: harrell miscellaneous. R package version 4.1-1. https://CRAN.R-project.org/web/packages/Hmisc.
  16. Hastie, T. J. & R. J. Tibshirani, 1990. Generalized additive models. Monographs on Statistics and Applied Probability 43: 205–208.Google Scholar
  17. Heino, J. & T. Muotka, 2006. Landscape position, local environmental factors, and the structure of molluscan assemblages of lakes. Landscape Ecology 21: 499–507.CrossRefGoogle Scholar
  18. Højsgaard S., U. Halekoh & J. Yan, 2016. Geepack: generalized estimating equation package. R package version 1.2-1. https://CRAN.R-project.org/web/packages/geepack.
  19. Horsák, M., 2006. Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. Journal of Biogeography 33: 98–107.CrossRefGoogle Scholar
  20. Horsák, M. & M. Hájek, 2003. Composition and species richness of molluscan communities in relation to vegetation and water chemistry in the western Carpathian spring fens: the poor–rich gradient. Journal of Molluscan Studies 69: 349–357.CrossRefGoogle Scholar
  21. Horsák, M., L. Juřičková & J. Picka, 2013. Molluscs of the Czech and Slovak Republics. Nakladatelství Kabourek, Zlín.Google Scholar
  22. Horsák, M., T. Čejka, L. Juřičková, L. Beran, J. Horáčková, J. Č. Hlaváč, L. Dvořák, O. Hájek, J. Divíšek, M. Maňas & V. Ložek, 2018: Check-list and distribution maps of the molluscs of the Czech and Slovak Republics. http://mollusca.sav.sk/malacology/checklist. Checklist updated at 7-March-2018, maps updated at 7-March-2018.
  23. Hoverman, J. T., C. J. Davis, E. E. Werner, D. K. Skelly, R. A. Relyea & K. L. Yurewicz, 2011. Environmental gradients and the structure of freshwater snail communities. Ecography 34: 1049–1058.CrossRefGoogle Scholar
  24. Kołodziejczyk, A., K. Lewandowski & A. Stañczykowska, 2009. Long-term changes of mollusc assemblages in bottom sediments of small semi-isolated lakes of different trophic state. Polish Journal of Ecology 25: 27–36.Google Scholar
  25. Langhammer, J. & F. Hartvich, 2014. HEM 2014 - metodika typově specifického hodnocení hydromorfologických ukazatelů ekologické kvality vodních toků. Ministerstvo životního prostředí České republiky, Praha.Google Scholar
  26. Larsson, J., 2018. Eulerr: area-proportional Euler Diagrams. R Package version 4.1.0. https://CRAN.R-project.org/package = eulerr.
  27. Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69: 1–24.CrossRefGoogle Scholar
  28. Lewis, D. B. & J. Magnuson, 2000. Landscape spatial patterns in freshwater snail assemblages across Northern Highland catchments. Freshwater Biology 43: 409–420.CrossRefGoogle Scholar
  29. Liikanen, A. & P. J. Martikainen, 2003. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment–water interface in a eutrophic lake. Chemosphere 52: 1287–1293.CrossRefGoogle Scholar
  30. Lodge, D. M., 1985. Macrophyte-gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwater Biology 15: 695–708.CrossRefGoogle Scholar
  31. Lodge, D. M., K. M. Brown, S. P. Klosiewski, R. A. Stein, A. P. Covich, B. K. Leathers & C. Bronmark, 1987. Distribution of freshwater snails: spatial scale and the relative importance of physicochemical and biotic factors. American Malacological Bulletin 5: 73–84.Google Scholar
  32. Lydeard, C., R. H. Cowie, W. F. Ponder, A. E. Bogan, P. Bouchet, S. A. Clark, K. S. Cummings, T. J. Frest, O. Gargominy, D. G. Herbert, R. Hershler, K. E. Perez, B. Roth, M. Seddon, E. E. Strong & F. G. Thompson, 2004. The global decline of nonmarine mollusks. AIBS Bulletin 54: 321–330.Google Scholar
  33. Marklund, O., H. Sandsten, L. A. Hansson & I. Blindow, 2002. Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshwater Biology 47: 2049–2059.CrossRefGoogle Scholar
  34. McCullagh, P. & J. A. Nelder, 1989. Generalized linear models, 2nd ed. Chapman & Hall, London.CrossRefGoogle Scholar
  35. McFadden, D., 1974. Conditional logit analysis of qualitative choice behavior. In Zarembka, P. (ed.), Frontiers in Econometrics. Academic Press, New York: 104–142.Google Scholar
  36. Naimi, B., 2015. Usdm: uncertainty analysis for species distribution models. R package version 1.1-15. https://CRAN.R-project.org/web/packages/usdm/usdm.pdf.
  37. Økland, J., 1990. Lakes and Snails: Environment and Gastropoda in 1500 Norwegian Lakes, Ponds and Rivers. Balogh Scientific Books, Oegstegeest.Google Scholar
  38. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2018. Vegan: community ecology package. R package version 2.5-1. http://CRAN.R-project.org/package = vegan.
  39. Parkos III, J. J., V. J. Santucci Jr. & D. H. Wahl, 2003. Effects of adult common carp (Cyprinus carpio) on multiple trophic levels in shallow mesocosms. Canadian Journal of Fisheries and Aquatic Sciences 60: 182–192.CrossRefGoogle Scholar
  40. Pelíšek, J., 1975. Dynamika ekologických vlastností půdy v lužním lese jižní Moravy (Lednice). Funkce, produktivita a struktura ekosystému lužního lesa. Vysoká škola zemědělská, Brno. (In Czech).Google Scholar
  41. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefGoogle Scholar
  42. Pérez-Quintero, J. C., 2007. Diversity, habitat use and conservation of freshwater molluscs in the lower Guadiana River basin SW Iberian Peninsula. Aquatic Conservation 17: 485–501.CrossRefGoogle Scholar
  43. Phillips, G., O. P. Pietiläinen, L. Carvalho, A. Solimini, A. L. Solheim & A. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.CrossRefGoogle Scholar
  44. Pieczyńska, E., A. Kołodziejczyk & J. I. Rybak, 1998. The responses of littoral invertebrates to eutrophication-linked changes in plant communities. Hydrobiologia 391: 9–21.CrossRefGoogle Scholar
  45. R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.
  46. Rosenzweig, M. L., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  47. Smith, V. H., G. D. Tilman & J. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.CrossRefGoogle Scholar
  48. Søndergaard, M., S. E. Larsen, T. B. Jørgensen & E. Jeppesen, 2011. Using chlorophyll-a and cyanobacteria in the ecological classification of lakes. Ecological Indicators 11: 1403–1412.CrossRefGoogle Scholar
  49. Sor, R., P. Boets, S. Lek & P. Goethals, 2017. Spatio-temporal co-occurrence of alien and native molluscs: a modelling approach using physical-chemical predictors. Aquatic Invasions 12: 147–158.CrossRefGoogle Scholar
  50. Sousa, R., C. Antunes & L. Guilhermino, 2007. Species composition and monthly variation of the Molluscan fauna in the freshwater subtidal area of the River Minho estuary. Estuarine, Coastal and Shelf Science 75: 90–100.CrossRefGoogle Scholar
  51. Spyra, A., 2010. Environmental factors influencing the occurrence of freshwater snails in woodland water bodies. Biologia 65: 697–703.CrossRefGoogle Scholar
  52. Spyra, A., 2017. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails. The Science of Nature 104: 73.CrossRefGoogle Scholar
  53. Strong, E. E., O. Gargominy, W. F. Ponder & P. Bouchet, 2008. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595: 149–166.CrossRefGoogle Scholar
  54. Sturm, R., 2012. Aquatic molluscs in high mountain lakes of the Eastern Alps Austria: species-environment relationships and specific colonization behaviour. Chinese Journal of Oceanology and Limnology 30: 59–70.CrossRefGoogle Scholar
  55. Tietze, E. & C. G. De Francesco, 2010. Environmental significance of freshwater mollusks in the southern Pampas, Argentina: to what detail can local environments be inferred from mollusc composition? Hydrobiologia 641: 133–143.CrossRefGoogle Scholar
  56. Tolasz, R., 2007. Climate Atlas of Czechia. Czech Hydrometeorological Institute, Praha.Google Scholar
  57. Van Damme, D., 2012. Anisus vorticulus. The IUCN red list of threatened species 2012: e.T155966A738056.Google Scholar
  58. Zealand, A. M. & M. J. Jeffries, 2009. The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK. Hydrobiologia 632: 177–187.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations