Climate change will decrease the range of a keystone fish species in La Plata River Basin, South America
Abstract
Climate change threatens freshwater fish by severely modifying water quality and hydrological dynamics, hence altering the species distribution. We assessed the climate change effects on the geographical distribution of Salminus brasiliensis, a keystone species of economic interest in the La Plata River basin. Using ecological niche models, we estimated the species range in the present time and assessed the range shift phenomena through climatically suitable areas in the future. We also quantified the predictive uncertainty from niche models, atmosphere–ocean general circulation models, and carbon emission scenarios. Our predictions indicated a great range contraction of S. brasiliensis in the future. The south-central portion of the basin should retain the climate refuge function for the species at 2050. Nonetheless, the segregation of this climate refuge in two smaller parts was predicted at the end of the century. Our study also revealed that the greatest source of uncertainty in forecasts of species range shifts arises from using alternative niche algorithms in modeling process. Our results contribute to more effective measures for conservation of S. brasiliensis, thus helping to ensure the ecosystem processes and socioeconomic activities in the basin dependent on this species.
Keywords
Climate refugia Ecological niche modeling Geographic range Global warming Predictive uncertainty Salminus brasiliensisNotes
Acknowledgements
We thank the National Council for Scientific and Technological Development (CNPq) and Higher Education Personnel (CAPES) for a scholarship granted to R. R., E. O. C., J. C. S., E.G. C., M. A. A., T. M., A. P., A. C. M. P., B. F. Z., E. M. C., G. A. M., I. J. O., J. L. A., J. E., J. V. F. S., J. R. P. A., J. A. S., M. J. M. G., M. S. I., and D.B. was supported by CAPES/PNPD post-doctoral fellowship, F. A. S. C. was supported by CNPq/INCt (grant DTI 380.376/2017-2) and A. A. A., J. A. F. D. F. and T. F. R. were supported by CNPq. P. L was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). We would like to thank Lucas Henrique Xavier for his contribution in the initial discussion of the study.
Supplementary material
References
- Abell, R., 2002. Conservation biology for the biodiversity crisis: a freshwater follow-up. Conservation Biology 16: 1435–1437.CrossRefGoogle Scholar
- Abell, R., M. Thieme, T. H. Ricketts, N. Olwero, R. Ng, P. Petry, E. Dinerstein, C. Revenga & J. Hoekstra, 2010. Concordance of freshwater and terrestrial biodiversity. Conservation Letters 4: 127–136.CrossRefGoogle Scholar
- Agência Nacional de Energia Elétrica—ANEEL, 2018. Sistema de Informações Geográficas do Setor Elétrico (SIGEL). [https://sigel.aneel.gov.br/Down/]. Accessed 07 Feb 2017.
- Agostinho, A. A., L. C. Gomes, I. S. Suzuki & H. F. Júlio Jr., 2003. Migratory fishes of the Upper Paraná River Basin, Brazil. In Carolsfeld, J., B. Harvey, C. Ross & A. Baer (eds), Migratory fishes of South America: biology, fisheries and conservation status. World Fisheries Trust, British Columbia: 19–99.Google Scholar
- Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology 4: 267–280.Google Scholar
- Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2005. Conservation of the Biodiversity of Brazil’s Inland Waters. Conservation Biology 19: 646–652.CrossRefGoogle Scholar
- Agostinho, A. A., L. C. Gomes & F. Pelicice, 2007. Ecologia e Manejo dos Recursos Pesqueiros em Reservatórios do Brasil. EDUEM, Maringá: 501p.Google Scholar
- Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.CrossRefGoogle Scholar
- Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.CrossRefGoogle Scholar
- Almeida, V. L. L., N. S. Hahn & A. E. A. M. Vazzoller, 1997. Feeding patterns in five predatory fishes of the high Paraná River floodplain (PR, Brazil). Ecology of Freshwater Fish 6: 123–133.CrossRefGoogle Scholar
- Amis, M., M. Rouget, M. Lotter & J. Day, 2009. Integrating freshwater and terrestrial priorities in conservation planning. Biological Conservation 142: 2217–2226.CrossRefGoogle Scholar
- Araújo, M. B. & M. New, 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 43–47.CrossRefGoogle Scholar
- Araújo, M. B. & A. T. Peterson, 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93(7): 1527–1539.PubMedCrossRefGoogle Scholar
- Baigún, C., S. B. Sverlij & H. López, 2003. Recursos pesqueros y pesquerías del Río de la Plata interior y medio (margen argentino). Informes de la División Zoología Vertebrados de la Universidad Nacional de La Plata, Argentina. Protección Ambiental del Río de La Plata y su Frente Marítimo: Prevención y Control de la Contaminación y Restauración de Hábitats, Montevideo. [www.freplata.org/documentos/tecnico.asp]. Accessed June 2016.
- Bailly, D., A. A. Agostinho & H. I. Suzuki, 2008. Influence of the flood regime on the reproduction of fish species with different reproductive strategies in the Cuiabá River, Upper Pantanal, Brazil. Rivers Research and Applications 24: 1218–1229.CrossRefGoogle Scholar
- Balian, E. V., H. Segers, C. Lévèque & K. Martens, 2008. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595: 627–637.CrossRefGoogle Scholar
- Barbieri, G., F. A. Sales & M. A. Cestarolli, 2001a. Growth and first sexual maturation size of Salminus maxillosus Valenciennes, 1849 (Characiformes, Characidae) in Mogi Guaçu river, state of São Paulo, Brazil. Acta Scientiarium (Biological Sciences) 23: 453–459.Google Scholar
- Barbieri, G., F. A. Salles & M. A. Cestarolli, 2001b. Reproductive and nutritional dynamics of Salminus maxillosus Valenciennes, 1849 (Pisces, Characidae) at Mogi Guaçu river, state of São Paulo, Brazil. Acta Scientiarium (Biological Sciences) 23: 441–444.Google Scholar
- Barletta, M., A. J. Jaureguizar, C. Baigun, N. F. Fontoura, A. A. Agostinho, V. M. F. Almeida-Val, A. L. Val, R. A. Torres, L. F. Jimenes-Segura, T. Giarrizzo, N. N. Fabré, V. S. Batista, C. Lasso, D. C. Taphorn, M. F. Costa, P. T. Chaves, J. P. Vieira & M. F. M. Corrêa, 2010. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on Neotropical systems. Journal of Fish Biology 76: 2118–2176.PubMedCrossRefGoogle Scholar
- Barradas, J. R. S., L. G. Silva, B. C. Harvey & N. F. Fontoura, 2012. Estimating migratory fish distribution from altitude and basin area: a case study in a large Neotropical river. Freshwater Biology 57: 2297–2305.CrossRefGoogle Scholar
- Barzotto, E., P. V. Sanches, A. Bialetzki, L. Orvati & L. C. Gomes, 2015. Larvae of migratory fish (Teleostei: Ostariophysi) in the lotic remnant of the Paraná River in Brazil. Zoologia 32: 270–280.CrossRefGoogle Scholar
- Bozza, A. N. & N. S. Hahn, 2010. Uso de recursos alimentares por peixes imaturos e adultos de espécies piscívoras em uma planície de inundação neotropical. Biota Neotropica 10: 217–226.CrossRefGoogle Scholar
- Brown, J. H. & B. A. Maurer, 1987. The American Naturalist 130: 1–17.CrossRefGoogle Scholar
- Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
- Busby, J. R., 1991. BIOCLIM: a bioclimatic analysis and prediction system. In Margules, C. R. & M. P. Austin (eds), Conservation: cost effective biological surveys and data analysis. CSIRO Publishing, Melbourne: 64–68.Google Scholar
- Capinha, C. & P. Anastácio, 2010. Assessing the environmental requirements of invaders using ensembles of distribution models. Diversity and Distributions 17: 13–24.CrossRefGoogle Scholar
- Carolsfeld, J., B. Harvey, C. Ross & A. Baer, 2003. Migratory Fishes of South America: Biology, Fisheries, and Conservation Status. International Development Research Centre and the World Bank, Ottawa.Google Scholar
- Carpenter, G., A. N. Gillison & J. Winter, 1993. Domain: a flexible modeling procedure for mapping potential distributions of plants and animals. Biodiversity Conservation 2: 667–680.CrossRefGoogle Scholar
- Comte, L. & S. Grenouillet, 2013. Species distribution modelling and imperfect detection: comparing occupancy versus consensus methods. Diversity and Distributions 19: 996–1007.CrossRefGoogle Scholar
- Coronel, G., Á. Menéndez & L. Chamorro, 2006. Physiography and Hydrology. In Barros, V., R. Clarke & P. S. Dias (eds), Climate change in the La Plata Basin. Inter-American Institute on Global Change, Buenos Aires: 44–60.Google Scholar
- Cowx, I. G. & R. L. Welcomme, 1998. Rehabilitation of rivers for fish. Fishing News Books, Blackwell Science, Oxford.Google Scholar
- Creel, S. & D. Christianson, 2008. Relationships between direct predation and risk effects. Trends in Ecology & Evolution 23: 194–201.CrossRefGoogle Scholar
- Dawson, T. P., S. T. Jackson, J. I. House, I. C. Prentice & G. M. Mace, 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332: 53–58.PubMedCrossRefGoogle Scholar
- de Vazzoler, A. E. A. M., 1996. Biologia da Reprodução de Peixes Teleósteos: Teoria e Prática. EDUEM, Maringá, Paraná: 169.Google Scholar
- Diniz-Filho, J. A. F., L. M. Bini, T. F. Rangel, R. D. Loyola, C. Hof, D. Nogués-Bravo & M. B. Araujo, 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897–906.CrossRefGoogle Scholar
- Diniz-Filho, J. A. F., V. G. Ferro, T. Santos, J. C. Nabout, R. Dobrovolski & P. Marco, 2010a. The three phases of the ensemble forecasting of niche models: geographic range and shifts in climatically suitable areas of Utetheisa ornatrix (Lepidoptera, Arctiidae). Revista Brasileira de Entomologia 54: 339–349.CrossRefGoogle Scholar
- Diniz-Filho, J. A. F., J. C. Nabout, L. M. Bini, R. D. Loyola, T. F. Rangel, D. Nogues-Bravo & M. B. Araújo, 2010b. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conservation and Diversity 3: 213–221.Google Scholar
- Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.PubMedCrossRefPubMedCentralGoogle Scholar
- Esteves, K. E. & A. V. Pinto Lobo, 2001. Feeding pattern Salminus maxillosus (Pisces, Characidae) at Cachoeira Das Emas MogiGuaçu river São Paulo state, southeast Brazil). Revista Brasileira de Zoologia 61: 267–276.CrossRefGoogle Scholar
- Farber, O. & R. Kadmon, 2003. Assessment of alternative approaches for bioclimatic modelling with special emphasis on the Mahalanobis distance. Ecological Modelling 160: 115–130.CrossRefGoogle Scholar
- Feitosa, L. A., R. Fernandes, R. S. Costa, L. C. Gomes & A. A. Agostinho, 2004. Parâmetros populacionais e simulação do rendimento por recruta de Salminus brasiliensis (Cuvier, 1816) do alto rio Paraná. Acta Scientiarum (Biological Sciences) 26: 317–323.Google Scholar
- Ficke, A. D., C. A. Myrick & L. J. Hansen, 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613.CrossRefGoogle Scholar
- Fraser, D. F. & J. F. Gilliam, 1992. Nonlethal impacts of predator invasion: facultative suppression of growth and reproduction. Ecology 73: 959–970.CrossRefGoogle Scholar
- Gagne, T. O., K. L. Ovitz, L. P. Griffin, J. W. Brownscombe, S. J. Cooke & A. J. Danylchuk, 2017. Evaluating the consequences of catch-and-release recreational angling on golden dorado (Salminus brasiliensis) in Salta, Argentina. Fisheries Research 186: 625–633.CrossRefGoogle Scholar
- Gama, M., D. Crespo, M. Dolbeth & P. M. Anastácio, 2017. Ensemble forecasting of Corbicula fluminea worldwide distribution: Projections of the impact of climate change. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 675–684.CrossRefGoogle Scholar
- Godoy, M. P. 1975. Peixes do Brasil, subordem Characoidei. Bacia do rio Mogi Guassu. Piracicaba, Brasil. Editora Franciscana, 4 volsGoogle Scholar
- Gomes, S. E., 2015. Temperatura del agua continental y su influencia en las migraciones de los peces en la cuenca del Río De La Plata. Revista del Museo Argentino de Ciencias Naturales 17(1): 43–49.Google Scholar
- Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857–874.CrossRefGoogle Scholar
- Griffiths, D., 2010. Pattern and process in the distribution of North American freshwater fish. Biological Journal of the Linnaean Society 100: 46–61.CrossRefGoogle Scholar
- Hahn, L., K. English, J. Carosfeld, L. G. M. Silva, J. D. Latini, A. A. Agostinho & D. R. F. Fernandez, 2007. Preliminary study on the application of radio-telemetry techniques to evaluate movements of fish in the Lateral Canal at Itaipu Dam, Brazil. Neotropical Ichthyology 5: 103–108.CrossRefGoogle Scholar
- Hamilton, S. K., 2009. Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 657: 19–35.CrossRefGoogle Scholar
- Hawkins, B. A., E. E. Porter & J. A. F. Diniz-Filho, 2003. Productivity and history as predictors of the latitudinal diversity gradient for terrestrial birds. Ecology 84: 1608–1623.CrossRefGoogle Scholar
- Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future records and adaptations in northern regions. Biological Reviews 84: 39–54.PubMedCrossRefGoogle Scholar
- Heithaus, M. R., A. Frid, A. J. Wirsing & B. Worm, 2008. Predicting ecological consequences of marine top predator declines. Trends in Ecology & Evolution 23: 202–210.CrossRefGoogle Scholar
- Hirzel, A. H., J. Hausser, D. Chessel & N. Perrin, 2002. Ecological-niche factor analysis: how to compute habitat suitability maps without absence data? Ecology 83: 2027–2036.CrossRefGoogle Scholar
- Hixon, M. A., S. W. Palaca & S. A. Sandin, 2002. Population regulation: historical context and contemporary challenges of open versus closed systems. Ecology 83(6): 1490–1508.CrossRefGoogle Scholar
- Hoeinghaus, D. J., A. A. Agostinho, L. C. Gomes, F. M. Pelicice, E. K. Okada, J. D. Latini, E. A. L. Kashiwaqui & K. O. Winemiller, 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology 23: 1222–1231.PubMedCrossRefGoogle Scholar
- Isaak, D. J., M. K. Young, D. E. Nagel, D. L. Horan & M. C. Groce, 2015. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Global Change Biology 21: 2540–2553.PubMedCrossRefGoogle Scholar
- Iturbide, M., J. Bedia & J. M. Gutiérrez, 2018. Tackling Uncertainties of Species Distribution Model Projections with Package mopa. The R Journal 10: 122–139.Google Scholar
- Iwaszkiw, J. M. & F. F. Lacoste, 2011. Artisanal fish at del Plata basin (Argentina) and its implications for the biodiversity conservation. Revista del Museo Argentino de Ciencias Naturales 13: 21–25.CrossRefGoogle Scholar
- Jiménez-Valverde, A., 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography 21: 498–507.CrossRefGoogle Scholar
- Johnson, J. C., 2005. The role of body size in mating interactions of the sexually cannibalistic fishing spider Dolomedes triton. Ethology 11: 51–61.CrossRefGoogle Scholar
- Junk, W. J. & K. M. Wantzen, 2004. The flood pulse concept: new aspects, approaches and applications—an update. In Welcomme, R. L. & T. Petr (eds), Proceedings of the second international symposium on the management of large rivers for fisheries. FAO Regional Office for Asia and the Pacific, Bangkok: 117–149.Google Scholar
- Karling, L. C., A. Isaac, I. P. Affonso, R. M. Takemoto & G. C. Pavanellii, 2013. The impact of a dam on the helminth fauna and health of a neotropical fish species Salminus brasiliensis (Cuvier 1816) from the upper Paraná River, Brazil. Journal of Helminthology 87: 245–251.PubMedCrossRefGoogle Scholar
- Kelly, A. & C. Kohler, 1996. Manipulation of spawning cycles of channel catfish in indoor water recircualting systems. The Progressive Fish Culturist 58: 221–228.CrossRefGoogle Scholar
- Keppel, G. & G. W. Wardell-Johnson, 2015. Refugial capacity defines holdouts, microrefugia and stepping-stones: a response to Hannah et al. Trends in Ecology and Evolution 30: 233–234.PubMedCrossRefGoogle Scholar
- Legendre, P. & L. Legendre, 2012. Numerical ecology. Elsevier Science BV, Amsterdam.Google Scholar
- Liu, M. & Y. Sadovy, 2005. Habitat association and social structure of the chocolate hind, Cephalopholis boenak (Pisces: Serranidae: Epinephelinae), at Ping Chau Island, north-eastern Hong Kong waters. Environmental Biology of Fishes 74: 9–18.CrossRefGoogle Scholar
- Lopes, T. M., D. Bailly, B. A. Almeida, N. C. L. Santos, B. C. G. Gimenez, G. O. Landgraf, P. C. L. Sales, M. S. Lima-Ribeiro, F. A. S. Cassemiro, T. F. Rangel, J. A. F. Diniz-Filho, A. A. Agostinho & L. C. Gomes, 2017. Two sides of a coin: effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS ONE 12: 1–18.Google Scholar
- Lopes, J. M., C. B. M. Alves, A. Peressin & P. S. Pompeu, 2018. Influence of rainfall, hydrological fluctuations, and lunar phase on spawning migration timing of the Neotropical fish Prochilodus costatus. Hydrobiologia 818: 145–161.CrossRefGoogle Scholar
- Millennium Ecosystem Assessment —MEA, 2005. Ecosystems and human well-being: Wetlands and water synthesis. Island Press, Washington.Google Scholar
- Mohseni, O. & H. G. Stefan, 1999. Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology 218: 128–141.CrossRefGoogle Scholar
- Morelli, T. L., C. Daly, S. Z. Dobrowski, D. M. Dulen, J. L. Ebersole, S. T. Jackson, J. D. Lundquist, C. I. Millar, S. P. Maher, W. B. Monahan, K. R. Nydick, K. T. Redmond, S. C. Sawyer, S. Stock & S. R. Beissinger, 2016. Managing climate change refugia for climate adaptation. PLoS ONE 11: 1–17.CrossRefGoogle Scholar
- Morelli, T. L., S. P. Maher, C. W. M. Lim, C. Kastely, L. M. Eastman, L. E. Flint, S. R. Beissinger & C. Moritz, 2017. Climate change refugia and habitat connectivity promote species persistence. Climate Change Responses 4: 1–12.CrossRefGoogle Scholar
- Ochoa-Ochoa, L. M., O. A. Flores-Villela & J. E. Bezaury-Creel, 2016. Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks. Ecological Modelling 320: 372–382.CrossRefGoogle Scholar
- Oliveira, P. T. S., E. Wendland, M. A. Nearing, R. L. Scott, R. Rosolem & H. R. Rocha, 2015. The water balance components of undisturbed tropical woodlands in the Brazilian Cerrado. Hydrology and Earth System Sciences 19: 2899–2910.CrossRefGoogle Scholar
- Oliveira, A. G., M. A Valencia, R. G. Rauber, R. M. Dias & A. A. Agostinho. 2018. Ecology of “dourado” Salminus brasiliensis (Cuvier 1816): the “king of the river”. In: K. Brink, P. Gough, J. Royte, P. P. Schollema & H. Wanningen (Org.). From Sea to Source. 2ed. The Netherlands: World Fish Migration Foundation: 188–189.Google Scholar
- Ormerod, S. J., 2009. Climate change, river conservation and the adaptation challenge. Aquatic Conservation 19: 609–613.CrossRefGoogle Scholar
- Paine, R. T., 1966. Food web complexity and species diversity. The American Naturalist 100: 65–75.CrossRefGoogle Scholar
- Paine, R. T., 1974. Intertidal community structure. Oecologia 15: 93–120.PubMedCrossRefGoogle Scholar
- Pecl, G. T., M. B. Araújo, J. D. Bell, J. Blanchard, T. C. Bonebrake, C. Chen, T. D. Clark, R. K. Colwell, F. Danielsen, B. Evengård, L. Falconi, S. Ferrier, S. Frusher, R. A. Garcia, R. B. Griffis, A. J. Hobday, C. Janion-Scheepers, M. A. Jarzyna, S. Jennings, J. Lenoir, H. I. Linnetved, V. Y. Martin, P. C. McCormack, J. McDonald, N. J. Mitchell, T. Mustonen, M. Pandolfi, N. P. Pettorelli, E. Popova, S. A. Robinson, B. R. Scheffers, J. D. Shaw, C. J. B. Sorte, J. M. Strugnell, J. M. Sunday, M. Tuanmu, A. Vergés, C. Villanueva, T. Wernberg, E. Wapstra & E. Williams, 2017. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355: 9214.CrossRefGoogle Scholar
- Pereira, H. M., P. W. Leadley, V. Proença, R. Alkemade, J. P. W. Scharlemann, J. F. Fernandez-Manjarrés, M. B. Araújo, P. Balvanera, R. Biggs, W. W. L. Cheung, L. Chini, H. D. Cooper, E. L. Gilman, S. Guénette, G. C. Hurtt, H. P. Huntington, G. M. Mace, T. Oberdorff, C. Revenga, P. Rodrigues, R. J. Scholes, U. R. Sumaila & M. Walpole, 2010. Scenarios for global biodiversity in the 21st century. Science 330: 1496–1501.PubMedCrossRefGoogle Scholar
- Peterson, A. T. & J. Soberón, 2012. Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação 10: 102–107.CrossRefGoogle Scholar
- Peterson, A. T., J. Soberón, R. G. Pearson, R. P. Anderson, E. Martínez-Meyer, M. Nakamura & M. B. Araújo, 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton.CrossRefGoogle Scholar
- Petrere, M., 1985. Migraciones de peces de agua dulce en America Latina: algunos comentarios. FAO Copescal Documento Ocasional 1: 17.Google Scholar
- Petri, A. C., L. C. Gomes, P. A. Piana & A. A. Agostinho, 2010. The role of the predatory trahira (Pisces: Erythrinidae) in structuring fish assemblages in lakes of a Neotropical floodplain. Hydrobiologia 651: 115–126.CrossRefGoogle Scholar
- Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.CrossRefGoogle Scholar
- Piana, P. A., L. C. Gomes & A. A. Agostinho, 2006. Comparison of predator–prey interaction models for fish assemblages from the neotropical region. Ecological Modelling 192: 259–270.CrossRefGoogle Scholar
- Poff, N. L., 2002. Ecological response to and management of increased flooding due to climate change. Philosophical Transactions of the Royal Society of London 360: 1497–1510.CrossRefGoogle Scholar
- Quirós, R., 2004. The La Plata river basin: international basin development and riverine fisheries. In Welcomme, R. L. & T. Petr (eds), Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries. Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific, Bangkok: 253–272.Google Scholar
- R Development Core Team, 2017. R: a language and environment for statistical computing. Version 3.2.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
- Rangel, T. F., J. A. F. Diniz-Filho & L. M. Bini, 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33: 46–50.CrossRefGoogle Scholar
- Reiss, H., S. Cunze, K. König, H. Neumann & I. Kröncke, 2011. Species distribution modelling of marine benthos: a North Sea case study. Marine Ecology Progress Series 442: 71–86.CrossRefGoogle Scholar
- Reynalte-Tataje, D. A., A. P. Nuñer, M. C. Nunes, V. Garcia, C. A. Lopes & E. Zaniboni-Filho, 2012. Spawning of migratory fish species between two reservoirs of the upper Uruguay River, Brazil. Neotropical Ichthyology 10(4): 829–835.CrossRefGoogle Scholar
- Santos, H. A., P. S. Pompeu & C. B. Martinez, 2007. Swimming performance of the migratory neotropical fish Leporninus reinhardti (Characiformes: Anostomidae). Neotropical Ichthyology 5: 139–146.CrossRefGoogle Scholar
- Schmitz, O. J., V. Krivan & O. Ovadia, 2004. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters 7: 153–163.CrossRefGoogle Scholar
- Schoener, T. W., 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704–726.CrossRefGoogle Scholar
- Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115–1123.PubMedCrossRefGoogle Scholar
- Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The principles and practice of statistics in biological research. W.H. Freeman and Co, New York.Google Scholar
- Stockwell, D. R. B. & D. Peters, 1999. The GARP modeling system: problems and solutions to automated spatial predictions. International Journal of Geographical Information Science 13: 143–158.CrossRefGoogle Scholar
- Suzuki, H. I., A. E. A. Vazzoler, E. E. Marques, M. A. P. Lizama & P. Inada, 2004. Reproductive ecology of the fish assemblages. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and its Floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden: 271–291.Google Scholar
- Sverlij, S. B. & A. Espinach-Ros, 1986. El dorado Salminus maxillosus (Pisces, Characiformes), em el rio de La Plata y rio Uruguay inferior. Revista de Investigacíon y Desarrollo Pesquero 6: 57–75.Google Scholar
- Tedesco, P. A., F. Leprieur, B. Hugueny, S. Brosse, H. H. Dürr, O. Beauchard, F. Busson & T. Oberdorff, 2012. Patterns and processes of global riverine fish endemism. Global Ecology and Biogeography 21: 977–987.CrossRefGoogle Scholar
- Terribile, L. C., J. A. F. Diniz-Filho & P. De Marco, 2010. How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end. Brazilian Journal of Biology 70: 263–269.CrossRefGoogle Scholar
- Tessarolo, G., T. F. Rangel, M. B. Araújo & J. Hortal, 2014. Uncertainty associated with survey design in Species Distribution Models. Diversity and Distributions 20: 1258–1269.CrossRefGoogle Scholar
- Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips & S. E. Williams, 2004. Extinction risk from climate change. Nature 427: 145–148.PubMedCrossRefGoogle Scholar
- Thuiller, W., T. Münkemüller, S. Lavergne, D. Mouillot, N. Mouquet & D. Gravel, 2013. A road map for integrating eco-evolutionary processes into biodiversity models. Ecology Letters 16: 94–105.PubMedPubMedCentralCrossRefGoogle Scholar
- Tófoli, R. M., R. M. Dias, G. H. Z. Alves, D. J. Hoeinghaus, L. C. Gomes, M. T. Baumgartner & A. A. Agostinho, 2017. Gold at what cost? Another megaproject threatens biodiversity in the Amazon. Perspectives in Ecology and Conservation 15: 129–131.CrossRefGoogle Scholar
- Trussel, G. C., P. J. Ewanchuk & C. M. Matassa, 2006. Habitat effects on the relative importance of trait and density mediated indirect interactions. Ecology Letters 9: 1245–1252.CrossRefGoogle Scholar
- Urban, M. C., G. Bocedi, A. P. Hendry, J.-B. Mihoub, G. Peer, A. Singer, J. R. Bridle, L. G. Crozier, L. DeMeester, W. Godsoe, A. Gonzalez, J. J. Hellmann, R. D. Holt, A. Huth, K. Johst, C. B. Krug, P. W. Leadley, S. C. F. Palmer, J. H. Pantel, A. Schmitz, P. A. Zollner & J. M. J. Travis, 2016. Improving the forecast for biodiversity under climate change. Science 353: 84661–84669.CrossRefGoogle Scholar
- Van Vliet, M. T. H., F. Ludwig, J. J. G. Zwolsman, G. P. Weedon & P. Kabat, 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research 47: W02544.Google Scholar
- Van Vliet, M. T. H., F. Ludwig & P. Kabat, 2013. Global streamflow and thermal habitats of freshwater fishes under climate change. Climatic Change 121: 739–754.CrossRefGoogle Scholar
- Vos, C. C., P. Berry, P. Opdam, H. Baveco, B. Nijhof, J. O’Hanley, C. Bell & H. Kuipers, 2008. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. Journal of Applied Ecology 45: 1722–1731.CrossRefGoogle Scholar
- Watanabe, E., M. J. Kishi, A. Ishida & M. N. Aita, 2012. Western Arctic primary productivity regulated by shelf-break warm eddies. Journal of Oceanography 68: 703–718.CrossRefGoogle Scholar
- Wiens, J. A., D. Stralberg, D. Jongsomjit, C. A. Howell & M. A. Snyder, 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences USA 106: 19729–19736.CrossRefGoogle Scholar
- Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81(2): 225–241.PubMedCrossRefGoogle Scholar
- Winemiller, K. O., 1992. Life history strategies and the effectiveness of sexual selection. Oikos 62: 318–327.CrossRefGoogle Scholar
- Winemiller, K. O., P. B. Mcintyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere Jr., C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. Torrente Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. Van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.PubMedCrossRefGoogle Scholar
- Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society of London 365: 2093–2106.PubMedCrossRefGoogle Scholar
- Zaniboni-Filho, E., J. Ribolli, S. Hermes-Silva & A. P. O. Nuñer, 2017. Wide reproductive period of a long-distance migratory fish in a subtropical river, Brazil. Neotropical Ichthyology 15(1): e160135.CrossRefGoogle Scholar
- Zarfl, C., A. Lumsdon, J. Berlekamp, L. Tydecks & K. Tockner, 2015. A global boom in hydropower dam construction. Aquatic Sciences 77: 161–170.CrossRefGoogle Scholar