Advertisement

Evolution of squat lobsters (Crustacea, Galatheoidea): mitogenomic data suggest an early divergent Porcellanidae

  • Ferran PaleroEmail author
  • Paula C. Rodríguez-Flores
  • Patricia Cabezas
  • Annie Machordom
  • Enrique Macpherson
  • Laure Corbari
Primary Research Paper

Abstract

Squat lobsters constitute an exceptional group to address evolutionary studies in marine species because of their high diversity at multiple taxonomic levels. The families included within Galatheoidea are characterized by morphological, molecular, and ecological differences. Previous phylogenetic reconstructions have considered either Galatheidae, Porcellanidae, or even Munidopsidae as the most derived family within Galatheoidea, but evolutionary relationships within the superfamily have not been fully resolved yet. In order to test previous phylogenetic hypotheses on the relative placement of Porcellanidae within the Galatheoidea, and further characterize mitochondrial gene order in Munidopsidae, the first complete mitochondrial genomic sequence of a Galatheidae squat lobster (Galathea aegyptiaca) and the partial mitogenome of Munidopsis polymorpha are reported here. These new sequences complement previous studies to include all extant families and provide further evidence on the importance of mitochondrial gene rearrangements in Galatheoidea. Implications of the new phylogenetic data on the evolution of carcinization within Anomura are also discussed.

Keywords

Crustacea Gene rearrangement Deep sea Squat lobsters Mitochondrial evolution 

Notes

Acknowledgements

Thanks are due to Gustav Paulay (FMNH), Paul Clark (NHM), Alain Crosnier (MNHN), and Paula Martin-Lefèvre (MNHN) because they were key to the completion of this study through both museum loans and joyful encouragement. Thanks are particularly due to Iván Acevedo for helping us to obtain permits for sampling Munidopsis polymorpha and Prof. Nishida (University of Tokyo) for hosting Patricia Cabezas and helping on the sequencing of Munidopsis polymorpha. The comments from two anonymous reviewers helped significantly to improve the original submission of this manuscript. This research was funded by projects PopComics, CTM2017-88080 (AEI/FEDER, UE) and ConCoast (CTM2014-57949-R) of the Spanish Government. FP acknowledges a post-doctoral contract funded by the Beatriu de Pinós Programme of the Generalitat de Catalunya.

References

  1. Abascal, F., R. Zardoya & D. Posada, 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.PubMedCrossRefGoogle Scholar
  2. Ahyong, S. T., K. Baba, E. Macpherson & G. C. B. Poore, 2010. A new classification of the Galatheoidea (Crustacea: Decapoda: Anomura). Zootaxa 68: 57–68.CrossRefGoogle Scholar
  3. Ahyong, S. T., K. E. Schnabel & E. W. Maas, 2009. Anomuran phylogeny: new insights from molecular data. In Martin, J. W., K. A. Crandall & D. L. Felder (eds), Decapod Crustacean Phylogenetics. CRC Press, Boca Raton: 399–414.CrossRefGoogle Scholar
  4. Ahyong, S. T., K. E. Schnabel & E. Macpherson, 2011. Phylogeny and fossil record of marine squat lobsters. In Poore, G., S. Ahyong & J. Taylor (eds), The Biology of Squat Lobsters. CSIRO Publishing, Melbourne: 73–104.Google Scholar
  5. Andrews S., 2010. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics.Google Scholar
  6. Baba, K., E. Macpherson, G. C. B. Poore, S. T. Ahyong, A. Bermudez, P. Cabezas, C.-W. C. W. Lin, M. Nizinski, C. Rodrigues & K. E. Schnabel, 2008. Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura—Families Chirostylidae, Galatheidae and Kiwaidae). Zootaxa 1905: 1–220.Google Scholar
  7. Baba, K., S. T. Ahyong & K. E. Schnabel, 2018. Rediagnosis of the squat lobster genus Gastroptychus Caullery, 1896, with a new genus Sternostylus and a new family Sternostylidae (Crustacea: Decapoda: Anomura: Chirostyloidea). Zootaxa 4524: 77–86.PubMedCrossRefGoogle Scholar
  8. Baeza, J., 2011. Squat lobsters as symbionts and in chemo-autotrophic environments. In Poore, G., S. Ahyong & J. Taylor (eds), The Biology of Squat Lobsters. CSIRO Publishing, Melbourne: 249–270.Google Scholar
  9. Bernt, M., A. Braband, B. Schierwater & P. F. Stadler, 2013. Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution 69: 328–338.PubMedCrossRefGoogle Scholar
  10. Boore, J. L., 1999. Animal mitochondrial genomes. Nucleic Acids Research 27: 1767–1780.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bracken-Grissom, H. D., M. E. Cannon, P. Cabezas, R. M. Feldmann, C. E. Schweitzer, S. T. Ahyong, D. L. Felder, R. Lemaitre & K. A. Crandall, 2013. A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). BMC Evolutionary Biology 13: 128.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bracken, H. D., A. Toon, D. L. Felder, J. W. Martin, M. Finley, J. Rasmussen, F. Palero & K. A. Crandall, 2009. The decapod tree of life: compiling the data and moving toward a consensus of decapod evolution. Arthropod Systematics and Phylogeny 67: 99–116.Google Scholar
  13. Brandley, M. C., A. Schmitz & T. W. Reeder, 2005. Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Systematic Biology 54: 373–390.PubMedCrossRefGoogle Scholar
  14. Cabezas, P., I. Sanmartín, G. Paulay, E. Macpherson & A. Machordom, 2012. Deep under the sea: unraveling the evolutionary history of the deep-sea squat lobster Paramunida (Decapoda, Munididae). Evolution 66: 1878–1896.PubMedCrossRefGoogle Scholar
  15. Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552.PubMedCrossRefGoogle Scholar
  16. Childress, J. J., 1995. Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends in Ecology & Evolution 10: 30–36.CrossRefGoogle Scholar
  17. Drummond, A. J. & A. Rambaut, 2007. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk & O. Gascuel, 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.PubMedCrossRefGoogle Scholar
  20. Kass, E. R. & E. A. Raftery, 1995. Bayes factors. Journal of the American Statistical Association 90: 773–795.CrossRefGoogle Scholar
  21. Keiler, J., S. Richter & C. S. Wirkner, 2015. Evolutionary morphology of the organ systems in squat lobsters and porcelain crabs (Crustacea: Decapoda: Anomala): an insight into carcinization. Journal of Morphology 276: 1–21.PubMedCrossRefGoogle Scholar
  22. Lee, C. W., J. H. Song, G. S. Min & S. Kim, 2016. The complete mitochondrial genome of squat lobster, Munida gregaria (Anomura, Galatheoidea, Munididae). Mitochondrial DNA Part B: Resources 1: 204–206.CrossRefGoogle Scholar
  23. Machordom, A. & E. Macpherson, 2004. Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence. Molecular Phylogenetics and Evolution 33: 259–279.PubMedCrossRefGoogle Scholar
  24. Macpherson, E. & K. Baba, 2011. Taxonomy of squat lobsters. In Poore, G., S. T. Ahyong & J. Taylor (eds), The Biology of Squat Lobsters. CSIRO Publishing, Melbourne: 40–73.Google Scholar
  25. Macpherson, E., W. Jones & M. Segonzac, 2005. A new squat lobster family of Galatheoidea (Crustacea, Decapoda, Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge. Zoosystema 27: 709–723.Google Scholar
  26. Martin, J. W. & L. G. Abele, 1986. Phylogenetic realtionships of the genus Aegla (Decapoda: Anomura: Aeglidae), whith comments on anomuran phylogeny. Journal of Crustacean Biology 6: 576–616.CrossRefGoogle Scholar
  27. Martin, J. W. & G. E. Davis, 2001. An updated classification of the recent crustacea. Natural History Museum of Los Angeles County, Science Series 39: 1–124.Google Scholar
  28. McLaughlin, P. A., R. Lemaitre & U. Sorhannus, 2007. Hermit crab phylogeny: a reappraisal and its “fall-out”. Journal of Crustacean Biology 27: 97–115.CrossRefGoogle Scholar
  29. Milne-Edwards, A. & E. L. Bouvier, 1894. Considerations génerales sur la famille des Galathéidés. Annales des Sciences Naturelles, Zoologie 16: 191–327.Google Scholar
  30. Morrison, C. L., A. W. Harvey, S. Lavery, K. Tieu, Y. Huang & C. W. Cunningham, 2002. Mitochondrial gene rearrangements confirm the parallel evolution of the crab—like form. Proceedings of the Royal Society of London, Part B 269: 345–350.CrossRefGoogle Scholar
  31. Osca, D., I. Irisarri, C. Todt, C. Grande & R. Zardoya, 2014. The complete mitochondrial genome of Scutopus ventrolineatus (Mollusca: Chaetodermomorpha) supports the Aculifera hypothesis. BMC Evolutionary Biology 14: 1–10.CrossRefGoogle Scholar
  32. Palero, F., K. A. Crandall, P. Abelló, E. Macpherson & M. Pascual, 2009. Phylogenetic relationships between spiny, slipper and coral lobsters (Crustacea, Decapoda, Achelata). Molecular Phylogenetics and Evolution 50: 152–162.PubMedCrossRefGoogle Scholar
  33. Palero, F., A. Robainas-Barcia, L. Corbari & E. Macpherson, 2017. Phylogeny and evolution of shallow-water squat lobsters (Decapoda, Galatheoidea) from the Indo-Pacific. Zoologica Scripta 46: 584–595.CrossRefGoogle Scholar
  34. Podsiadlowski, L., A. Braband, T. H. Struck, J. von Döhren & T. Bartolomaeus, 2009. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea. BMC Genomics 10: 1–14.CrossRefGoogle Scholar
  35. Roehrdanz, R., S. L. Cameron, M. Toutges & S. S. Wichmann, 2014. The complete mitochondrial genome of the tarnished plant bug, Lygus lineolaris (Heteroptera: Miridae). Mitochondrial DNA 1736: 1–2.Google Scholar
  36. Roterman, C. N., W. K. Lee, X. Liu, R. Lin, X. Li & Y. J. Won, 2018. A new yeti crab phylogeny: vent origins with indications of regional extinction in the East Pacific. PLoS ONE 13: e0194696.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Schnabel, K. E., S. T. Ahyong & E. W. Maas, 2011. Galatheoidea are not monophyletic—molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily. Molecular Phylogenetics and Evolution 58: 157–168.PubMedCrossRefGoogle Scholar
  38. Shen, H., A. Braband & G. Scholtz, 2013. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Molecular Phylogenetics and Evolution 66: 776–789.PubMedCrossRefGoogle Scholar
  39. Somero, G. N., 1992. Biochemical ecology of deep-sea animals. Experientia 48: 537–543.PubMedCrossRefGoogle Scholar
  40. Sun, S., M. Hui, M. Wang & Z. Sha, 2018. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics 25: 42–52.Google Scholar
  41. Talavera, G. & J. Castresana, 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577.PubMedCrossRefGoogle Scholar
  42. Tan, M. H., H. M. Gan, Y. P. Lee & C. M. Austin, 2016. The complete mitogenome of the porcelain crab Petrolisthes haswelli Miers, 1884 (Crustacea: Decapoda: Anomura). Mitochondrial DNA Part A: DNA mapping, sequencing, and analysis 27: 3983–3984.CrossRefGoogle Scholar
  43. Tan, M. H., H. M. Gan, Y. P. Lee, S. Linton, F. Grandjean, M. L. Bartholomei-Santos, A. D. Miller & C. M. Austin, 2018. ORDER within the chaos: insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Molecular Phylogenetics and Evolution 127: 320–331.PubMedCrossRefGoogle Scholar
  44. Tsang, L. M., T. Y. Chan, S. T. Ahyong & K. H. Chu, 2011. Hermit to king, or hermit to all: multiple transitions to crab-like forms from hermit crab ancestors. Systematic Biology 60: 616–629.PubMedCrossRefGoogle Scholar
  45. Yamauchi, M., M. Miya & M. Nishida, 2002. Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). Gene 295: 89–96.PubMedCrossRefGoogle Scholar
  46. Yang, J. S. & W. J. Yang, 2008. The complete mitochondrial genome sequence of the hydrothermal vent galatheid crab Shinkaia crosnieri (Crustacea: Decapoda: Anomura): a novel arrangement and incomplete tRNA suite. BMC Genomics 9: 1–13.CrossRefGoogle Scholar
  47. Zariquiey Álvarez, R., 1968. Crustáceos Decápodos Ibéricos. Investigación Pesquera, Barcelona.Google Scholar
  48. Zerbino, D. R. & E. Birney, 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821–829.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zhang, D., Y. Zhou, H. Cheng & C. Wang, 2017a. The complete mitochondrial genome of a yeti crab Kiwa tyleri Thatje, 2015 (Crustacea: Decapod: Anomura: Kiwaidae) from deep-sea hydrothermal vent. Mitochondrial DNA Part B 2: 141–142.CrossRefGoogle Scholar
  50. Zhang, Y., J. Sun, C. Chen, H. K. Watanabe, D. Feng, Y. Zhang, J. M. Y. Chiu, P. Y. Qian & J. W. Qiu, 2017b. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species. Scientific Reports 7: 46205.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental ProtectionUniversity of LodzŁódźPoland
  2. 2.Centre d’Estudis Avançats de Blanes (CEAB-CSIC)BlanesSpain
  3. 3.Museo Nacional de Ciencias Naturales (MNCN-CSIC)MadridSpain
  4. 4.Institut de Systématique, Évolution, Biodiversité (ISYEB UMR 7205), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHEParisFrance

Personalised recommendations