Physiological response of the toxic and non-toxic strains of a bloom-forming cyanobacterium Microcystis aeruginosa to changing ultraviolet radiation regimes

  • Zhiguang Xu
  • Guang Gao
  • Bo Tu
  • Hongjin Qiao
  • Hongmei Ge
  • Hongyan WuEmail author
Primary Research Paper


Microcystis aeruginosa, a common bloom-forming cyanobacterium with both non-toxic and toxic strains, experiences a variable light environment due to buoyancy regulation and the variable mixing of the water columns. However, little is known on how non-toxic and toxic strains respond to changing photosynthetically active radiation (PAR) and ultraviolet radiation (UVR). Here, the non-toxic and toxic strains of M. aeruginosa were exposed to simulated solar radiation for 6 h, and their physiological changes were investigated at different irradiance levels of UVR (295–400 nm) in combination with PAR (400–700 nm). Our results showed that UVR at each level resulted in a larger inhibition on the maximum photochemical yield of Photosystem II (PSII) in the toxic strain. The non-toxic strain showed a quicker rise in the non-photochemical quenching when PAR + UVR were below 40.8 + 5.0 W m−2 and higher exopolysaccharide content at each radiation level, while the toxic strain exhibited stronger recovery capacity and superoxide dismutase (SOD) activity compared with the non-toxic strain, particularly for cells treated in the presence of UVR. In addition, UVR induced much higher content of microcystin in the toxic strain with the increase of irradiance levels, but decreased it when UVR was higher than 7.3 W m−2. Although UVR led to growth inhibition in both strains, the toxic strain showed much higher specific growth rate under UVR in comparison with the non-toxic strain. Our results indicate that the toxic strain has a competitive advantage relative to the non-toxic strain in a changing light environment with increase of UVR and PAR via stronger antioxidant capacity (higher SOD activity and the synthesis of microcystin) and quicker PSII recovery capacity.


Cyanobacterium Exopolysaccharide Microcystin Photosystem II Superoxide dismutase UVR 



This research was supported by the National Natural Science Foundation of China (Nos. 31270452 and 41376129), the Research Project of Chinese Ministry of Education (No. 213026A), the Natural Science Foundation of Hubei (2014CFB607; 2016CFB355) and Shandong Province (ZR2017QD007), Jiangsu Planned Projects for Postdoctoral Research Funds (1701003A), the China Postdoctoral Science Foundation (2018T110463&2017M620270), the Lianyungang Innovative and Entrepreneurial Doctor Program (201702), and Open Subject of Rongcheng Marine Industrial Technology Research Institute of Ludong University (KF20180001).


  1. Bouchard, J. N., S. Roy & D. A. Campbell, 2006. UVB effects on the photosystem II-D1 protein of phytoplankton and natural phytoplankton communities. Photochemistry and Photobiology 82: 936–951.CrossRefGoogle Scholar
  2. Brown, C. M., J. D. Mackinnon, A. M. Cockshutt, T. A. Villareal & D. A. Campbell, 2008. Flux capacities and acclimation costs in Trichodesmium from the gulf of Mexico. Marine Biology 154: 413–422.CrossRefGoogle Scholar
  3. Campbell, D. A., M. Eriksson, G. Oquist, P. Gustafsson & A. K. Clarke, 1998. The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proceedings of the National Academy of Sciences United States of America 95: 364–369.CrossRefGoogle Scholar
  4. Chen, L., G. Wang, S. Hong, A. Liu, C. Li & Y. Liu, 2009. UV-B induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. Journal of Integrative Plant Biology 51: 194–200.CrossRefGoogle Scholar
  5. Davis, T. W., D. L. Berry, G. L. Boyer & C. J. Gobler, 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715–725.CrossRefGoogle Scholar
  6. Davis, T. W., M. J. Harke, M. A. Marcoval, J. Goleski, C. Orano-Dawson, D. L. Berry & C. J. Gobler, 2010. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strain of Microcystis during cyanobacterial blooms. Aquatic Microbial Ecology 61: 149–162.CrossRefGoogle Scholar
  7. Deblois, C. P. & P. Juneau, 2012. Comparison of resistance to light stress in toxic and non-toxic strains of Microcystis aeruginosa (Cyanophyta). Journal of Phycology 48: 1002–1011.CrossRefGoogle Scholar
  8. Ding, Y., L. Song & B. Sedmak, 2013. UVB radiation as a potential selective factor favoring microcystin producing bloom forming cyanobacteria. PLOS ONE 8: e73919.CrossRefGoogle Scholar
  9. Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes: part I. Cyanoprokaryotes and chlorophytes across lake trophic status. Hydrobiologia 438: 1–12.CrossRefGoogle Scholar
  10. Domingues, R. B., C. C. Guerra, A. B. Barbosa, V. Brotas & H. M. Galvao, 2014. Effects of ultraviolet radiation and CO2 increase on winter phytoplankton assemblages in a temperate coastal lagoon. Journal of Plankton Research 36: 672–684.CrossRefGoogle Scholar
  11. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.CrossRefGoogle Scholar
  12. Ferreira, K. N., T. M. Iverson, K. Maghlaoui, J. Barber & S. Iwata, 2004. Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838.CrossRefGoogle Scholar
  13. Gan, N., Y. Xiao, L. Zhu, Z. Wu, J. Liu, C. Hu & L. Song, 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environmental Microbiology 14: 730–742.CrossRefGoogle Scholar
  14. Gao, G., K. Gao & M. Giordano, 2009. Responses to solar UV radiation of the diatom Skeletonema costatum (Bacillariophyceae) grown at different Zn2+ concentrations. Journal of Phycology 45: 119–129.CrossRefGoogle Scholar
  15. Gao, G., Q. Shi, Z. Xu, J. Xu, D. A. Campbell & H. Wu, 2018a. Global warming interacts with ocean acidification to alter PSII function and protection in the diatom Thalassiosira weissflogii. Environmental and Experimental Botany 147: 95–103.CrossRefGoogle Scholar
  16. Gao, G., Z. Xu, J. Xu, Q. Shi & H. Wu, 2018b. Increased CO2 exacerbates the stress of ultraviolet radiation on photosystem II function in the diatom Thalassiosira weissflogii. Environmental and Experimental Botany 156: 96–105.CrossRefGoogle Scholar
  17. Garcia-Pichel, F., 1994. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnology and Oceanography 39: 1704–1717.CrossRefGoogle Scholar
  18. Häder, D. & R. P. Sinha, 2005. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutation Research 571: 221–233.CrossRefGoogle Scholar
  19. Häder, D. P., C. E. Williamson, S. Å. Wängberg, M. Rautio, K. C. Rose, K. Gao, E. W. Helbling, R. P. Sinha & R. Worrest, 2015. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical & Photobiological Sciences 14: 108–126.CrossRefGoogle Scholar
  20. Hakala, M., I. Tuominen, M. Meränen, T. Tyystjärvi & E. Tyystjärvi, 2005. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochimica Et Biophysica Acta 1706: 68–80.CrossRefGoogle Scholar
  21. Hernando, M., M. C. C. Minaglia, G. Malanga, C. Houghton, D. Andrinolo, D. Sedan, L. Rosso & L. Giannuzzi, 2018. Physiological responses and toxin production of Microcystis aeruginosa in short-term exposure to solar UV radiation. Photochemical & Photobiological Sciences 17: 69–80.CrossRefGoogle Scholar
  22. Jiang, H. & B. Qiu, 2005. Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae) to prolonged UV-B exposure. Journal of Phycology 41: 983–992.CrossRefGoogle Scholar
  23. Jiang, H. & B. Qiu, 2011. Inhibition of photosynthesis by UV-B exposure and its repair in the bloom-forming cyanobacterium Microcystis aeruginosa. Journal of Applied Phycology 23: 691–696.CrossRefGoogle Scholar
  24. Kardinaal, W. E. A., L. Tonk, I. Janse, S. Hol, P. Slot, J. Huisman & P. M. Visser, 2007. Competition for light between toxic and non-toxic strains of the harmful cyanobacterium Microcystis. Applied & Environmental Microbiology 73: 2939–2946.CrossRefGoogle Scholar
  25. Kromkamp, J. & A. E. Walsby, 1990. A computer-model of buoyancy regulation and vertical migration in cyanobacteria. Journal of Plankton Research 12: 161–183.CrossRefGoogle Scholar
  26. Liu, J., H. Wu, X. Xu & H. Wu, 2014. Photosynthetically active radiation interacts with UVR during photoinhibition and repair in the cyanobacterium Arthrospira platensis (Cyanophyceae). Phycologia 53: 508–512.CrossRefGoogle Scholar
  27. Meissner, S., D. Steinhauser & E. Dittmann, 2015. Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis. Environmental Microbiology 17: 1497–1509.CrossRefGoogle Scholar
  28. Mloszewska, A. M., D. B. Cole, N. J. Planavsky, A. Kappler, D. S. Whitford, G. W. Owttrim & K. O. Konhauser, 2018. UV radiation limited the expansion of cyanobacteria in early marine photic environments. Nature Communications 9: 3088.CrossRefGoogle Scholar
  29. Müller, P., X. P. Li & K. K. Niyogi, 2001. Non-photochemical quenching: a response to excess light energy. Physiologia Plantarum 125: 1558–1566.CrossRefGoogle Scholar
  30. Nishiyama, Y., S. I. Allakhverdiev & N. Murata, 2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica Et Biophysica Acta 1757: 742–749.CrossRefGoogle Scholar
  31. Ohnishi, N., S. I. Allakhverdiev, S. Takahashi, S. Higashi, M. Watanabe, Y. Nishiyama & N. Murata, 2005. Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44: 8494–8499.CrossRefGoogle Scholar
  32. Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacterial blooms: causes, consequences and controls. Microbial Ecology 65: 995–1010.CrossRefGoogle Scholar
  33. Phelan, R. R. & T. G. Downing, 2011. A growth advantage for microcystin production by Microcystis PC7806 under high light. Journal of Phycology 47: 1241–1246.CrossRefGoogle Scholar
  34. Rastogi, R. P., S. P. Singh, D. P. Häder & R. P. Sinha, 2010. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochemical and Biophysical Research Communications 397: 603–607.CrossRefGoogle Scholar
  35. Reynolds, C. S., 2007. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578: 37–45.CrossRefGoogle Scholar
  36. Sabart, M., D. Pobel, E. Briand, B. Combourieu, M. J. Salencon, J. F. Humbert & D. Latour, 2010. Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Applied & Environmental Microbiology 76: 4750–4759.CrossRefGoogle Scholar
  37. Schatz, D., Y. Keren, O. Hadas, S. Carmeli, A. Sukenik & A. Kaplan, 2005. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environmental Microbiology 7: 798–805.CrossRefGoogle Scholar
  38. Sheng, J., M. He, S. Yu, H. Shi & Y. Qian, 2006. Detection of microcystin-LR in waters using indirect competitive ELISA. Huan Jing Ke Xue 27: 1166–1170.PubMedGoogle Scholar
  39. Sicora, C., Z. Mate & T. Vass, 2003. The interaction of visible and UV-B light during photodamage and repair of photosynstem II. Photosynthesis Research 75: 127–137.CrossRefGoogle Scholar
  40. Sinha, R. P., H. D. Kumar, A. Kumar & D. P. Häder, 1995. Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Acta Protozoologica 34: 187–192.Google Scholar
  41. Sommaruga, R., Y. W. Chen & Z. W. Liu, 2009. Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microbial Ecology 57: 667–674.CrossRefGoogle Scholar
  42. Stanier, R., R. Kunisawa, M. Mandel & G. Cohen-Bazire, 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews 35: 171–205.PubMedPubMedCentralGoogle Scholar
  43. Van Apeldoorn, M. E., H. P. Van Egmond, G. Speijers & G. J. I. Bakker, 2007. Toxins of cyanobacteria. Molecular Nutrition & Food Research 51: 7–60.CrossRefGoogle Scholar
  44. Vincenzini, M., R. De Philippis, C. Sili & R. Materassi, 1990. Studies on exopolysaccharide release by diazotrophic batch cultures of cyanospira capsuluta. Applied Microbiology & Biotechnology 34: 392–396.CrossRefGoogle Scholar
  45. Wang, Y., J. Zhao, J. Li, S. Li, L. Zhang & M. Wu, 2011. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa. Current Microbiology 62: 679–683.CrossRefGoogle Scholar
  46. Wang, Z., J. Dong & D. Li, 2012. Conformational changes in photosynthetic pigment proteins on thylakoid membranes can lead to fast non-photochemical quenching in cyanobacteria. Science China-Life Sciences 55: 726–734.CrossRefGoogle Scholar
  47. Weisz, D. A., M. L. Gross & H. B. Pakrasi, 2017. Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II. Science Advances 3: 3013.CrossRefGoogle Scholar
  48. Wu, H., A. M. Cockshutt, A. Mccarthy & D. A. Campbell, 2011. Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms. Plant Physiology 156: 2184–2195.CrossRefGoogle Scholar
  49. Wu, H., S. Roy, M. Alami, B. R. Green & D. A. Campbell, 2012a. Photosystem II photoinactivation, repair, and protection in marine centric diatoms. Plant Physiology 160: 464–476.CrossRefGoogle Scholar
  50. Wu, X., G. Gao, M. Giordano & K. Gao, 2012b. Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundamental and Applied Limnology 180: 279–290.CrossRefGoogle Scholar
  51. Yang, J., X. Deng, Q. Xian, X. Qian & A. Li, 2014. Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical. Hydrobiologia 727: 65–73.CrossRefGoogle Scholar
  52. Yang, Z., F. Kong, X. Shi, Y. Yu & M. Zhang, 2015. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain. Journal of Hazardous Materials 283: 447–453.CrossRefGoogle Scholar
  53. Yu, Y., Y. Zeng, J. Li, C. Yang, X. Zhang, F. Luo & X. Dai, 2019. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously. Science of the Total Environment 650: 34–43.CrossRefGoogle Scholar
  54. Yuan, W., G. Gao, Q. Shi, Z. Xu & H. Wu, 2018. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges. Marine Environmental Research 135: 63–69.CrossRefGoogle Scholar
  55. Zeeshan, M. & S. M. Prasad, 2009. Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. South African Journal of Botany 75: 466–474.CrossRefGoogle Scholar
  56. Zhang, M., F. Kong, X. Tan, Z. Yang, H. Cao & P. Xing, 2007. Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World Journal of Microbiology and Biotechnology 23: 663–670.CrossRefGoogle Scholar
  57. Zhang, X., C. Chen, J. Ding, A. Hou, Y. Li, Z. Niu, X. Su, Y. Xu & E. A. Laws, 2010. The 2007 water crisis in Wuxi, China: analysis of the origin. Journal of Hazardous Materials 182: 130–135.CrossRefGoogle Scholar
  58. Zhang, Y., H. Jiang & B. Qiu, 2013. Effects of UVB radiation on competition between the bloom-forming cyanobacterium Microcystis aeruginosa and the chlorophyceae Chlamydomonas microsphaera. Journal of Phycology 49: 318–328.CrossRefGoogle Scholar
  59. Zilliges, Y., J. Kehr, S. Meissner, K. Ishida, S. Mikkat, M. Hagemann, A. Kaplan, T. Borner & E. Dittmann, 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLOS ONE 6: e17615.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Life ScienceLudong UniversityYantaiChina
  2. 2.Hubei Provincial Cooperative Innovation Center of Industrial FermentationHubei University of TechnologyWuhanChina
  3. 3.Jiangsu Key Laboratory of Marine Bioresources and EnvironmentHuaihai Institute of TechnologyLianyungangChina
  4. 4.Co-Innovation Center of Jiangsu Marine Bio-industry TechnologyHuaihai Institute of TechnologyLianyungangChina

Personalised recommendations