Desmids (Zygnematophyceae, Streptophyta) community drivers and potential as a monitoring tool in South American peat bogs

  • Gabriela González GarrazaEmail author
  • Luciana Burdman
  • Gabriela Mataloni
Primary Research Paper


Tierra del Fuego Island hosts the largest area of peatlands in the Southern Hemisphere, largely encompassing peat bogs where peat is actively formed and thus acting as carbon sinks. Under a scenario of increasing human pressure, the development of scientific tools for the characterization and monitoring of these systems is highly relevant. Desmids have been used as bioindicators in wetlands on account of their high sensitivity to changes in the environment. Here we identified the main drivers of periphytic and planktonic desmid communities in two Fuegian peat bogs, hosting two types of aquatic environments: clear and vegetated pools. Although peat bogs differed in overall species richness and diversity for both communities, some clear trends were detected regarding their dependence on environmental conditions. Unexpectedly, the taxonomic composition of the periphytic desmids did not depend on the substrate. Instead, their diversity and species richness changed along a minero-ombrotrophic gradient. As for planktonic desmids, their abundance and life strategy jointly changed from few large-sized species to larger numbers of small-sized species along with terrestrialization stage of the pools. We conclude that both desmid communities can be used complementarily to monitor changes over time in the trophic and terrestrialization status of peat bog pools.


Desmids Monitoring tool Pools Peat bog Tierra del Fuego 



This research was supported by Grant PICT 2012- 0529 from ANPCyT and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Field research and samples extraction permit was granted by the Provincia de Tierra del Fuego through Resolution SDSyS 570/12. The authors thank the Dirección Provincial de Recursos Hídricos de la Provincia de Tierra del Fuego and Centro Austral de Investigaciones Científicas (CADIC- CONICET) by logistical support, and to all members of the research team (V. Casa, S. Camargo, P. Fermani, D. García, R. Lombardo, M. V. Quiroga and B. Van de Vijver), for partaking in the field work; and also to the anonymous reviewers and editors for valuable comments on the manuscript.

Supplementary material

10750_2019_3895_MOESM1_ESM.pdf (930 kb)
Supplementary material 1 (PDF 931 kb)
10750_2019_3895_MOESM2_ESM.tif (7.5 mb)
Supplementary material 2 (TIFF 7686 kb)
10750_2019_3895_MOESM3_ESM.tif (9.9 mb)
Supplementary material 3 (TIFF 10113 kb)
10750_2019_3895_MOESM4_ESM.tif (3.7 mb)
Supplementary material 4 (TIFF 3765 kb)


  1. Briskaite, R., J. Kostkeviciene & J. R. Naujalis, 2008. Desmids (Chlorophyta, Zygnematophyceae) from the Girutiskis mire complex reserve (East Lithuania). Biologia 63: 907–914.CrossRefGoogle Scholar
  2. Brook, A. J., 1981. The Biology of Desmids. Botanical Monographs 16. Blackwell, Oxford.Google Scholar
  3. Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van de Bogert, D. L. Bade, D. Bastviken, C. M. Gille, J. R. Hodgson, J. F. Kitchell & E. S. Kritzberg, 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750.CrossRefGoogle Scholar
  4. Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  5. Clarkson, B. R., L. A. Schipper, B. Moyersoen & W. B. Silvester, 2005. Foliar 15N natural abundance indicates phosphorus limitation of bog species. Oecologia 144: 550–557.CrossRefGoogle Scholar
  6. Coesel, P. F. M., 1975. The relevance of desmids in the biological typology and evaluation of freshwater. Hydrobiological Bulletin 9: 93–101.CrossRefGoogle Scholar
  7. Coesel, P. F. M., 1982. Structural characteristics and adaptations of desmid communities. Journal of Ecology 70: 163–177.CrossRefGoogle Scholar
  8. Coesel, P. F. M., 1983. The significance of desmids as indicators of the trophic status of freshwaters. Schweizerische Zeitschrift für Hidrobiologie 45: 388–393.Google Scholar
  9. Coesel, P. F. M., 1986. Structure and dynamics of desmid communities in hydrosere vegetation in a mesotrophic quivering bog. Beih. zur Nova Hedwigia 56: 119–143.Google Scholar
  10. Coesel, P. F. M., 2001. A method for quantifying conservation value in lentic freshwater habitats using desmids as indicator organisms. Biodiversity and Conservation 10: 177–187.CrossRefGoogle Scholar
  11. Coesel, P. F. M., 2003. Desmid flora data as a tool in conservation management of Dutch freshwater wetlands. Biologia Bratislava 58: 717–722.Google Scholar
  12. Coesel, P. F. M. & J. Meesters, 2007. Desmids of the Lowlands. KNNV Publishing, Zeist.CrossRefGoogle Scholar
  13. Coesel, P. F. M. & J. Meesters, 2013. European Flora of the Desmid Genera Staurastrum and Staurodemus. KNNV Publishing, Zeist.CrossRefGoogle Scholar
  14. Cosandey, F., 1964. La tourbière des Tenasses sur Vevey. Matér Levé géobot de la suisse 45: 1–234.Google Scholar
  15. Cottingham, K. L., 1999. Nutrients and zooplankton as multiple stressors of phytoplankton communities: evidence from size structure. Limnology and Oceanography 44: 810–827.CrossRefGoogle Scholar
  16. DGRH, Dirección General de Recursos Hídricos, 2018. Technical report, note 651/17. Departamento Hidrología y Redes de medición. Secretaría de Ambiente, Desarrollo Sostenible y Cambio climático, Ushuaia, Tierra del Fuego.Google Scholar
  17. Fritz, C., G. van Dijk, A. J. P. Smolders, V. A. Pancotto, T. J. T. M. Elzenga, J. G. M. Roelofs & A. P. Grootjans, 2012. Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biology 14: 491–499.CrossRefGoogle Scholar
  18. García, P., R. D. García, M. C. Marinone, V. Casa, G. González Garraza & G. Mataloni, 2017. Aquatic microinvertebrate abundance and species diversity in peat-bogs of Tierra del Fuego (Argentina). Limnology 18: 85–96.CrossRefGoogle Scholar
  19. González Garraza, G., G. Mataloni, R. Iturraspe, R. Lombardo, S. Camargo & M. V. Quiroga, 2012. The limnological character of bog pools in relation to meteorological and hydrological features. Mires and Peat 10: 1–14.Google Scholar
  20. Goodyer, E., 2014. Quantifying the Desmid Diversity of Scottish Blanket Mires. PhD Thesis University of Aberdeen.Google Scholar
  21. Gorham, E., 1991. Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.CrossRefGoogle Scholar
  22. Grootjans, A., R. Iturraspe, A. Lanting, C. Fritz & H. Joosten, 2010. Ecohydrological features of some contrasting mires in Tierra del Fuego, Argentina. Mires and Peat 6: 1–15.Google Scholar
  23. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.Google Scholar
  24. Irénée-Marie, F. I. C., 1939. Flore desmidiale de la région de Montreal. Laprairie, Canada.Google Scholar
  25. Iturraspe, R., 2010. Las turberas de Tierra del Fuego y el Cambio Climático Global. Fundación Humedales/Wetlands International, Buenos Aires.Google Scholar
  26. Iturraspe, R. & A. Urciuolo, 2004. Les tourbières de la Terre de Feu en Argentine: un patrimoine natural trèsmenace. Geocarrefour 79: 143–152.CrossRefGoogle Scholar
  27. John, D. M. & D. B. Williamson, 2007. Important plant areas for freshwater algae. In Brodie, J., D. M. John, I. Tittley, M. J. Holmes & D. B. Williamson. Important Plant Areas for Algae: A Provisional Review of Sites and Areas of Importance for Algae in the United Kingdom. Plantlife International, Salisbury: pp. 46–58.Google Scholar
  28. Joosten, H. & D. Clarke, 2002. Wise Use of Mires and Peatlands. Background and Principles Including a Framework for Decision-Making. International Mire Conservation Group/International Peat Society, Finlandia.Google Scholar
  29. Kenkel, N. C. & L. Orloci, 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–928.CrossRefGoogle Scholar
  30. Kitner, M., A. Poulíčková, M. Novotný & R. Hájek, 2004. Desmids (Zygnematophyceae) of the spring fens of a part of West Carpathians. Czech Phycology 4: 43–61.Google Scholar
  31. Krasznai, E., G. Fehér, G. Borics, G. Várbíró, I. Grigorszky & B. Tóthmérész, 2008. Use of desmids to assess the natural conservation value of a Hungarian oxbow (Malom-Tisza, NE-Hungary). Biologia 63: 928–935.CrossRefGoogle Scholar
  32. Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.CrossRefGoogle Scholar
  33. Küppers, G. C., G. González Garraza, M. V. Quiroga, R. Lombardo, M. C. Marinone, A. Vinocur & G. Mataloni, 2016. Highly diverse planktonic ciliate assemblages characterize minerotrophic and ombrotrophic pools from a Fuegian peat bog (Argentina). Hydrobiologia 773: 117–134.CrossRefGoogle Scholar
  34. Lara, E., C. Seppey, G. González Garraza, D. Singer, M. V. Quiroga & G. Mataloni, 2015. Molecular diversity of planktonic eukaryotes discriminate minerotrophic and ombrotrophic peatland pools in Tierra del Fuego (Argentina). Journal of Plankton Research 37: 645–655.CrossRefGoogle Scholar
  35. Lenzenweger, R., 1993. Beitrag zur Kenntnis der Desmidiaceenflora von Feuerland (Argentinien). Achiv für Protistenkunde 143: 143–152.CrossRefGoogle Scholar
  36. Lepš, J. & P. Šmilauer, 2003. Multivariate analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  37. Lindsay, R. A., D. J. Charman, F. Everingham, R. M. O’. Reilly, M. A. Palmer, T. A. Rowell & D. A. Stroud, 1988. The Flow Country. The peatlands of Caithness and Sutherland. Nature Conservancy Council, Peterborough.Google Scholar
  38. Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell, Oxford.Google Scholar
  39. Mataloni, G., 1991. Remarks on the distribution and ecology of some desmids from Tierra del Fuego (Argentina). Nova Hedwiga 53: 433–443.Google Scholar
  40. Mataloni, G., 1995. Ecological notes on some interesting desmids from Tierra del Fuego (Argentina) peat bogs. Nova Hedwiga 60: 135–144.Google Scholar
  41. Mataloni, G., 1999. Ecological studies on algal communities from Tierra del Fuego peat bogs. Hydrobiologia 391: 157–171.CrossRefGoogle Scholar
  42. Mataloni, G. & G. Tell, 1996. Comparative analysis of the phytoplankton communities of a peat bog from Tierra del Fuego (Argentina). Hydrobiologia 325: 101–112.CrossRefGoogle Scholar
  43. Mataloni, G., G. González Garraza & A. Vinocur, 2015. Landscape-driven environmental variability largely determines abiotic characteristics and phytoplankton patterns in peat bog pools (Tierra del Fuego, Argentina). Hydrobiologia 751: 105–125.CrossRefGoogle Scholar
  44. Mutinová, P. T., J. Neustupa, S. Bevilacqua & A. Terlizzi, 2016. Host specificity of epiphytic diatom (Bacillariophyceae) and desmid (Desmidiales) communities. Aquatic Ecology 50: 697–709.CrossRefGoogle Scholar
  45. Negro, A. I., C. De Hoyos & J. J. Aldasoro, 2003. Diatom and desmid relationships with the environment in mountain lakes and mires of NW spain. Hydrobiologia 505: 1–13.CrossRefGoogle Scholar
  46. Neustupa, J., K. Černá & J. Štastný, 2011. The effects of aperiodic desiccation on the diversity of benthic desmid assemblages in a lowland peat bog. Biodiversity and Conservation 20: 1695–1711.CrossRefGoogle Scholar
  47. Neustupa, J., K. Černá & J. Štastný, 2012. Spatio-temporal community structure of peat bog benthic desmids on a microscale. Aquatic Ecology 46: 229–239.CrossRefGoogle Scholar
  48. Neustupa, J., J. Veselá & J. Štastný, 2013. Differential cell size structure of desmids and diatoms in the phytobenthos of peatlands. Hydrobiologia 709: 159–171.CrossRefGoogle Scholar
  49. Ngearnpat, N. & Y. Peerapornpisal, 2007. Application of desmid diversity in assessing the water quality of 12 freshwater resources in Thailand. Journal Applied Phycology 19: 667–674.CrossRefGoogle Scholar
  50. Queimaliños, C. L., B. E. Modenutti & E. B. Balseiro, 1998. Phytoplankton responses to experimental enhancement of grazing pressure and nutrient recycling in a small Andean lake. Freshwater Biology 40: 41–49.CrossRefGoogle Scholar
  51. Quiroga, M. V., F. Unrein, G. González Garraza, G. C. Küppers, R. Lombardo, M. C. Marinone, S. Menu Marque & G. Mataloni, 2013. The planktonic communities from peat bog pools: structure, temporal variation and environmental factors. Journal Plankton Research 35: 1234–1253.CrossRefGoogle Scholar
  52. Quiroga, M. V., A. Valverde, G. Mataloni & D. Cowan, 2015. Understanding diversity patterns in bacterioplankton communities from a sub-Antarctic peatland. Environmental Microbiology Reports 7: 547–553.CrossRefGoogle Scholar
  53. Quiroga, M. V., G. Mataloni, B. M. S. Wanderley, A. M. Amado & F. Unrein, 2017. Bacterioplankton morphotypes structure and cytometric fingerprint rely on environmental conditions in a sub-Antarctic peatland. Hydrobiologia 787: 255–268.CrossRefGoogle Scholar
  54. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  55. Roig, C., 2004. Antecedentes sobre turberas en Tierra del Fuego. In Blanco, D. E. & V. M. de la Balze (eds), Los turbales de la Patagonia: bases para su inventario y la conservación de su biodiversidad. Fundación Humedales/Wetlands International, Buenos Aires: 33–44.Google Scholar
  56. Roig, C. & F. A. Roig, 2004. Consideraciones generales. In Blanco, D. E. & V. M. de la Balse (eds), Los turbales de la Patagonia, Bases para su inventario y la conservación de su biodiversidad. Fundación Humedales/Wetlands International, Buenos Aires: 5–21.Google Scholar
  57. Roulet, N., P. M. Lafleur, P. J. H. Richard, T. R. Moore, E. R. Humphreys & J. Bubier, 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13: 397–411.CrossRefGoogle Scholar
  58. Rydin, H. & J. K. Jeglum, 2006. The Biology of Peatlands. Oxford University Press, Oxford.CrossRefGoogle Scholar
  59. Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  60. Sharp, J. H., E. T. Peltzer, M. J. Alperin, G. Gauwet, J. W. Farrington, B. Fry, D. M. Karl, J. H. Martin, A. Spitzy, S. Tugrul & C. A. Carlson, 1993. DOC procedures sub-group report. Marine Chemistry 41: 37–49.CrossRefGoogle Scholar
  61. Stamenković, M. & D. Hanelt, 2016. Geographic distribution and ecophysiological adaptations of desmids (Zygnematophyceae, Streptophyta) in relation to PAR, UV radiation and temperature: a review. Hydrobiologia 787: 1–26.CrossRefGoogle Scholar
  62. Štastný, J., 2008. Desmids from ephemeral pools and aerophytic habitats from the Czech Republic. Biologia 63: 888–894.CrossRefGoogle Scholar
  63. Štastný, J., 2009. The desmids of the Swamp Nature Reserve (North Bohemia, Czech Republic) and a small neighbouring bog: species composition and ecological condition of both sites. Fottea 9: 135–148.CrossRefGoogle Scholar
  64. Štastný, J. & F. A. C. Kouwets, 2012. New and remarkable desmids (Zygnematophyceae, Streptophyta) from Europe: taxonomical notes based on LM and SEM observations. Fottea Olomouc 12: 293–313.CrossRefGoogle Scholar
  65. Štěpánková, J., J. Vavrušková, P. Hašler, P. Mazalová & A. Poulíčková, 2008. Diversity and ecology of desmids of peat bogs in the Jizerskéhory Mts. Biologia 63: 891–896.CrossRefGoogle Scholar
  66. Štěpánková, J., P. Hašler, M. Hladká & A. Poulíčková, 2012. Diversity and ecology of desmids of peat bogs in the Jeseníky Mts: spatial distribution, remarkable finds. Fottea 12: 111–126.CrossRefGoogle Scholar
  67. terBraak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (vers. 4). Microcomputer Power, Ithaca, NY.Google Scholar
  68. Utermöhl, H., 1958. Zurvervollkommung der quatitativen phytoplankton-methodik. Internationale vereiningung für theoretische und Angewandte limnologie 9: 1–38.Google Scholar
  69. van Bellen, S., D. Mauquoy, P. D. M. Hughes, T. P. Roland, T. J. Daley, N. J. Loader, F. A. Street-Perrott, E. M. Rice, V. A. Pancotto & R. J. Payne, 2016. Last-Holocene climate dynamics recorded in the peat bogs of Tierra del Fuego, South America. The Holocene 26: 489–501.CrossRefGoogle Scholar
  70. van Geest, A. & P. F. M. Coesel, 2012. Desmids from Lake Nabugabo (Uganda) and adjacent peat bogs. Fottea 12: 95–110.CrossRefGoogle Scholar
  71. West, W. & G. S. West, 1904. A monograph of British Desmidiaceae. I. Ray Society, London.CrossRefGoogle Scholar
  72. West, W. & G. S. West, 1905. A Monograph of British Desmidiaceae II. Ray Society, London.Google Scholar
  73. West, W. & G. S. West, 1908. A Monograph of British Desmidiaceae III. Ray Society, London.Google Scholar
  74. West, W. & G. S. West, 1912. A Monograph of British Desmidiaceae IV. Ray Society, London.Google Scholar
  75. West, W., G. S. West & N. Carter, 1923. A Monograph of British Desmidiaceae V, Vol. Ray. Ray Society, London.Google Scholar
  76. Yacubson, S., 1963. Desmidiaceas de Lapataia (Tierra del Fuego). Revista del museo Argentino de Ciencias Naturales Bernadino Rivadavia e Instituto Nacional de Investigación de las Ciencias Naturales. Hidrobiologia 1: 157–178.Google Scholar
  77. Zar, J. H., 2010. Biostatistical Analysis. Pearson prentice hall, Upper Saddle River.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gabriela González Garraza
    • 1
    • 2
    Email author
  • Luciana Burdman
    • 3
  • Gabriela Mataloni
    • 3
  1. 1.Centro Austral de Investigaciones Científicas (CADIC), CONICETUshuaiaArgentina
  2. 2.Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA)Universidad Nacional de Tierra del FuegoUshuaiaArgentina
  3. 3.Instituto de Investigación e Ingeniería AmbientalUniversidad Nacional de San Martín (UNSAM), CONICETSan MartínArgentina

Personalised recommendations