, Volume 844, Issue 1, pp 257–273 | Cite as

Rotifer adaptation to the unpredictability of the growing season

  • Lluis Franch-Gras
  • Eva Tarazona
  • Eduardo M. García-Roger
  • María José Carmona
  • Africa Gómez
  • Manuel SerraEmail author
ROTIFERA XV Review Paper


Sexual reproduction in cyclically parthenogenetic rotifers results in the production of diapausing eggs that tolerate harsh conditions. Theory predicts that the adaptation to environmental unpredictability can occur by the evolution of bet-hedging strategies. When facing unpredictability in the length of rotifer growing season, patterns of diapausing egg production and hatching can disperse risks and act as bet-hedging strategies. Here, we identified the methodologies to test bet-hedging theory and summarized predictions on rotifer diapause traits. We assessed these predictions by reviewing and reanalyzing results from other studies on field and experimentally evolving populations of Brachionus plicatilis from Spanish ponds. These studies include (1) a quantification of the unpredictability in field populations, (2) the measurement of diapause-related traits in laboratory conditions, and (3) genomic data. The view arising is that these rotifers adaptively respond to the unpredictability in their localities. As expected, propensity for sex increased with unpredictability. Hatching fractions of diapausing eggs were intermediate and decreased with unpredictability only in experimentally evolving populations. In field populations, genetic variance in the focal traits did not increase with unpredictability. Finally, environmental features and diapause-related traits are associated to suites of specific genes, although the molecular mechanisms linking these genes with life history are still unknown.


Bet hedging Cyclical parthenogenesis Dormancy Sexual reproduction Temporary habitats Time-varying environments Propensity for sex Diapausing egg hatching fraction Genomic analysis Local adaptation SNPs 



This study was supported by the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica from the Spanish Ministry of Economy and Competitiveness, grant CGL2015-65422-P (co-financed by FEDER funds, European Union). L.F.-G. was supported by a predoctoral contract (PREDOC13-110502) from the Universitat de Valencia and E.T was supported by a predoctoral contract from the Spanish Ministry of Economy and Competitiveness (BES-2013-066448).

Supplementary material

10750_2019_3886_MOESM1_ESM.docx (93 kb)
Supplementary material 1 (DOCX 93 kb)


  1. Aparici, E., M. J. Carmona & M. Serra, 1998. Sex allocation in haplodiploid cyclical parthenogens with density-dependent proportion of males. The American Naturalist 152: 652–657.PubMedGoogle Scholar
  2. Aparici, E., M. J. Carmona & M. Serra, 2001. Intrapopulation variability for mixis initiation in Brachionus plicatilis. Hydrobiologia 446(447): 45–50.Google Scholar
  3. Aparici, E., M. J. Carmona & M. Serra, 2002. Evidence for an even sex allocation in haplodiploid cyclical parthenogens. Journal of Evolutionary Biology 15: 65–73.Google Scholar
  4. Becks, L. & A. F. Agrawal, 2010. Higher rates of sex evolve in spatially heterogeneous environments. Nature 468: 89–92.PubMedPubMedCentralGoogle Scholar
  5. Becks, L. & A. F. Agrawal, 2012. The evolution of sex is favoured during adaptation to new environments. PLOS Biology 10: e1001317.PubMedPubMedCentralGoogle Scholar
  6. Bell, G. & S. Collins, 2008. Adaptation, extinction and global change. Evolutionary Applications 1: 3–16.PubMedPubMedCentralGoogle Scholar
  7. Blondel, J., J. Aronson, J.-Y. Bodiou & G. Boeuf, 2010. The Mediterranean Region Biological diversity in space and time. Oxford University Press, Oxford.Google Scholar
  8. Botero, C. A., F. J. Weissing, J. Wright & D. R. Rubenstein, 2015. Evolutionary tipping points in the capacity to adapt to environmental change. Proceedings of the National Academy of Sciences of the United States of America 112: 184–189.PubMedGoogle Scholar
  9. Brown, T. M., 2016. Using light to tell the time of day: sensory coding in the mammalian circadian visual network. Journal of Experimental Biology 2016(219): 1779–1792. Scholar
  10. Buoro, M. & S. M. Carlson, 2014. Life history syndromes: integrating dispersal through space and time. Ecology Letters 17: 756–767.PubMedGoogle Scholar
  11. Campillo, S., E. M. García-Roger, M. J. Carmona & M. Serra, 2009. Selection on life-history traits and genetic population divergence in rotifers. Journal of Evolutionary Biology 22: 2542–2553.PubMedPubMedCentralGoogle Scholar
  12. Campillo, S., E. M. García-Roger, M. J. Carmona & M. Serra, 2011a. Local adaptation in rotifer populations. Evolutionary Ecology 25: 933–947.Google Scholar
  13. Campillo, S., M. Serra, M. J. Carmona & A. Gómez, 2011b. Widespread secondary contact and new glacial refugia in the halophilic rotifer Brachionus plicatilis in the Iberian Peninsula. PLOS ONE 6: e20986.PubMedPubMedCentralGoogle Scholar
  14. Carmona, M. J., M. Serra & M. R. Miracle, 1994. Effect of population density and genotype on life-history traits in the rotifer Brachionus plicatilis of Müller. Journal of Experimental Marine Biology and Ecology 182: 223–235.Google Scholar
  15. Carmona, M. J., A. Gómez & M. Serra, 1995. Mictic patterns of the rotifer Brachionus plicatilis Müller in small ponds. Hydrobiologia 313(314): 365–371.Google Scholar
  16. Carmona, M. J., N. Dimas-Flores, E. M. García-Roger & M. Serra, 2009. Selection of low investment in sex in a cyclically parthenogenetic rotifer. Journal of Evolutionary Biology 22: 1975–1983.PubMedPubMedCentralGoogle Scholar
  17. Childs, D. Z., C. J. E. Metcalf & M. Rees, 2010. Evolutionary bet hedging in the real world: empirical evidence and challenges revealed by plants. Proceedings of the Royal Society B: Biological Sciences 277: 3055–3064.PubMedGoogle Scholar
  18. Ciros-Pérez, J., A. Gómez & M. Serra, 2001. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research 23: 1311–1328.Google Scholar
  19. Clauss, M. J. & D. L. Venable, 2000. Seed germination in desert annuals: an empirical test of adaptive bet hedging. The American Naturalist 155(2): 168–186.PubMedGoogle Scholar
  20. Cohen, D., 1966. Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology 12: 119–129.PubMedGoogle Scholar
  21. Colwell, R. K., 1974. Predictability, constancy, and contingency of periodic phenomena. Ecology 55: 1148–1153.Google Scholar
  22. Coop, G., D. Witonsky, A. Di Rienzo & J. K. Pritchard, 2010. Using environmental correlations to identify loci underlying local adaptation. Genetics 185: 1411–1423.PubMedPubMedCentralGoogle Scholar
  23. Cooper, W. S. & R. H. Kaplan, 1982. Adaptive “coin-flipping”: a decision-theoretic examination of natural selection for random individual variation. Journal of Theoretical Biology 94: 135–151.PubMedGoogle Scholar
  24. De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization Hypothesis and the dispersal—gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.Google Scholar
  25. Declerck, S. A. J. & S. Papakostas, 2017. Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications. Hydrobiologia 796: 131–144.Google Scholar
  26. Declerck, S. A. J., A. R. Malo, S. Diehl, D. Waasdorp, K. Lemmen, K. Proios, et al., 2015. Rapid adaptation of herbivore consumers to nutrient limitation: eco-evolutionary feedbacks to population demography and resource control. Ecology Letters 18: 553–562.PubMedPubMedCentralGoogle Scholar
  27. Ellner, S. P., 1997. You bet your life: life-history strategies in fluctuating environments. In Othmer, H., F. R. Adler, M. Lewis & J. C. Dallon (eds), Case studies in mathematical modeling: ecology, physiology and cell biology. Prentice Halle, New Jersey: 3–24.Google Scholar
  28. Evans, M. E. K., R. Ferriere, M. J. Kane & D. L. Venable, 2007. Bet hedging via seed banking in desert evening primroses (Oenothera, Onagraceae): demographic evidence from natural populations. The American Naturalist 169: 184–194.PubMedGoogle Scholar
  29. Foll, M. & O. Gaggiotti, 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993.PubMedPubMedCentralGoogle Scholar
  30. Franch-Gras, L., E. M. García-Roger, M. J. Carmona & M. Serra, 2017a. Quantifying unpredictability: a multiple model approach for Mediterranean ponds by using satellite imagery. PLOS ONE 12: e0187958.PubMedPubMedCentralGoogle Scholar
  31. Franch-Gras, L., E. M. García-Roger, M. Serra & M. J. Carmona, 2017b. Adaptation in response to environmental unpredictability. Proceedings of the Royal Society B: Biological Sciences 284: 20170427.PubMedGoogle Scholar
  32. Franch-Gras, L., C. Hahn, E. M. García-Roger, M. J. Carmona, M. Serra & A. Gómez, 2018. Genomic signatures of local adaptation to the degree of environmental predictability in rotifers. Scientific Reports 8(1): 16051.PubMedPubMedCentralGoogle Scholar
  33. Furness, A. I., K. Lee & D. N. Reznick, 2015. Adaptation in a variable environment: phenotypic plasticity and bet-hedging during egg diapause and hatching in an annual killifish. Evolution 69: 1461–1475.PubMedGoogle Scholar
  34. Fussmann, G. F., 2011. Rotifers: excellent subjects for the study of macro-and microevolutionary change. Hydrobiologia 662: 11–18.Google Scholar
  35. Fussmann, G. F., S. P. Ellner & N. G. Hairston, 2003. Evolution as a critical component of plankton dynamics. Proceedings of the Royal Society B: Biological Sciences 270: 1015–1022.PubMedGoogle Scholar
  36. Fussmann, G. F., M. Loreau & P. A. Abrams, 2007. Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology 21: 465–477.Google Scholar
  37. Gabaldón, C. & M. J. Carmona, 2015. Allocation patterns in modes of reproduction in two facultatively sexual cryptic rotifer species. Journal of Plankton Research 37: 429–440.Google Scholar
  38. Gabaldón, C., J. Montero-Pau, M. Serra & M. J. Carmona, 2013. Morphological similarity and ecological overlap in two rotifer species. PLOS ONE 8: e57087.PubMedPubMedCentralGoogle Scholar
  39. Gabaldón, C., M. J. Carmona, J. Montero-Pau & M. Serra, 2015a. Long-term competitive dynamics of two cryptic rotifer species: diapause and fluctuating conditions. PLOS ONE 10: e0124406.PubMedPubMedCentralGoogle Scholar
  40. Gabaldón, C., M. Serra, M. J. Carmona & J. Montero-Pau, 2015b. Life-history traits, abiotic environment and coexistence: the case of two cryptic rotifer species. Journal of Experimental Marine Biology and Ecology 465: 142–152.Google Scholar
  41. Gabaldón, C., J. Montero-Pau, M. J. Carmona & M. Serra, 2015c. Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers. Journal of Plankton Research 37: 953–965.Google Scholar
  42. Gabaldón, C., D. Fontaneto, M. J. Carmona, J. Montero-Pau & M. Serra, 2017. Ecological differentiation in cryptic rotifer species: what we can learn from the Brachionus plicatilis complex. Hydrobiologia 796: 7–18.Google Scholar
  43. García-Roger, E. M., M. J. Carmona & M. Serra, 2006. Patterns in rotifer diapausing egg banks: density and viability. Journal of Experimental Marine Biology and Ecology 336: 198–210.Google Scholar
  44. García-Roger, E. M., M. Serra & M. J. Carmona, 2014. Bet-hedging in diapausing egg hatching of temporary rotifer populations: a review of models and new insights. International Review of Hydrobiology 99: 96–106.Google Scholar
  45. Gilbert, J. J., 1963. Mictic female production in rotifer Brachionus calyciflorus. Journal of Experimental Zoology 153: 113–124.Google Scholar
  46. Gilbert, J. J., 1974. Dormancy in rotifers. Transactions of the American Microscopical Society 93: 490–513.Google Scholar
  47. Gilbert, J. J., 2002. Endogenous regulation of environmentally-induced sexuality in a rotifer: a multi-generational parental effect induced by fertilization. Freshwater Biology 47: 1633–1641.Google Scholar
  48. Gilbert, J. J., 2003. Environmental and endogenous control of sexuality in a rotifer life cycle: developmental and population biology. Evolution & Development 5: 19–24.Google Scholar
  49. Gilbert, J. J., 2007. Induction of mictic females in the rotifer Brachionus: oocytes of amictic females respond individually to population-density signal only during oogenesis shortly before oviposition. Freshwater Biology 52: 1417–1426.Google Scholar
  50. Gilbert, J. J., 2017a. Non-genetic polymorphisms in rotifers: environmental and endogenous controls, development, and features for predictable or unpredictable environments. Biological Reviews 92: 964–992.PubMedPubMedCentralGoogle Scholar
  51. Gilbert, J. J., 2017b. Resting-egg hatching and early population development in rotifers: a review and a hypothesis for differences between shallow and deep waters. Hydrobiologia 796: 235–243.Google Scholar
  52. Gilbert, J. J. & T. Schröder, 2004. Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnology & Oceanography 49: 1341–1354.Google Scholar
  53. Gilbert, J. J. & T. Schröder, 2007. Intraclonal variation in propensity for mixis in rotifers: variation among females and with maternal age. Hydrobiologia 593: 121–128.Google Scholar
  54. Gilbert, J. J. & M. C. Diéguez, 2010. Low crowding threshold for induction of sexual reproduction and diapause in a Patagonian rotifer. Freshwater Biology 55: 1705–1718.Google Scholar
  55. Gómez, A. & G. R. Carvalho, 2000. Sex, parthenogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Molecular Ecology 9: 203–214.PubMedGoogle Scholar
  56. Gómez, A., M. Serra, G. R. Carvalho & D. Lunt, 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.PubMedGoogle Scholar
  57. Gómez, A., J. Montero-Pau & D. Lunt, 2007. Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula. Molecular Ecology 16: 3228–3240.PubMedGoogle Scholar
  58. Graham, J. K., M. L. Smith & A. M. Simons, 2014. Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa. Proceedings of the Royal Society B: Biological Sciences 281: 20140706.PubMedGoogle Scholar
  59. Gremer, J. R. & L. Venable, 2014. Bet hedging in desert winter annual plants: optimal germination strategies in a variable environment. Ecology Letters 17: 380–387.PubMedGoogle Scholar
  60. Halkett, F., R. Harrington, M. Hullé, P. Kindlmann, F. Menu, C. Rispe & M. Plantegenest, 2004. Dynamics of production of sexual forms in Aphids: theoretical and experimental evidence for adaptive “coin-flipping” plasticity. The American Naturalist 163: 112–125.Google Scholar
  61. Haafke, J., M. A. Chakra & L. Becks, 2016. Eco-evolutionary feedback promotes red queen dynamics and selects for sex in predator populations. Evolution 70: 641–652.PubMedGoogle Scholar
  62. Hairston, N., 1998. Time travelers: what’s timely in diapause research? Archiv für Hydrobiologie. Advances in Limnology 52: 1–15.Google Scholar
  63. Hairston Jr., N. G. & W. R. Munns Jr., 1984. The timing of copepod diapause as an evolutionarily stable strategy. The American Naturalist 123: 733–751.Google Scholar
  64. Haldane, J. B. S., 1957. The cost of natural selection. Journal of Genetics 55: 511.Google Scholar
  65. Huey, R. B. & A. F. Bennett, 1990. Physiological adjustments to fluctuating thermal environments: an ecological and evolutionary perspective. In Morimoto, R., A. Tissieres & C. Georgopoulos (eds), Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press, New York: 37–59.Google Scholar
  66. Kern, P., R. L. Cramp & C. E. Franklin, 2015. Physiological responses of ectotherms to daily temperature variation. Journal of Experimental Biology 218: 3068–3076.PubMedGoogle Scholar
  67. Kolasa, J. & C. D. Rollo, 1991. Introduction: the heterogeneity of heterogeneity: a glossay. In Kolasa, J. & T. A. Pickett (eds), Ecological Heterogeneity. Springer-Verlag, Berlin: 1–23.Google Scholar
  68. Kubanek, J. & T. W. Snell, 2008. Quorum sensing in rotifers. In Winans, S. C. & B. L. Bassler (eds), Chemical Communication Among Microbes. American Society for Microbiology Press, Washington, DC.Google Scholar
  69. Laderman, A. D. & H. N. Guttman, 1963. Induction of sexuality by alteration of photoperiod in the rotifer Brachionus rubens. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 152: 5–11.Google Scholar
  70. Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.Google Scholar
  71. Lenormand, T., D. Roze & F. Rousset, 2009. Stochasticity in evolution. Trends in Ecology and Evolution 24: 157–165.PubMedGoogle Scholar
  72. Levins, R., 1968. Evolution in Changing Environments. Princeton University Press, Princeton.Google Scholar
  73. Li, X. Y., J. Lehtonen & K. Kokko, 2017. Sexual reproduction as bet-hedging. In Apaloo, J. & B. Viscolani (eds), Advances in dynamic and mean field games. Birkhäuser, Cham.Google Scholar
  74. Meyers, L. A. & J. J. Bull, 2002. Fighting change with change: adaptive variation in an uncertain world. Trends in Ecology and Evolution 17: 551–557.Google Scholar
  75. Montero-Pau, J. & M. Serra, 2011. Life-cycle switching and coexistence of species with no niche differentiation. PLOS ONE 6: e20314.PubMedPubMedCentralGoogle Scholar
  76. Montero-Pau, J., E. Ramos-Rodríguez, M. Serra & A. Gómez, 2011. Long-term coexistence of rotifer cryptic species. PLOS ONE 6: e21530.PubMedPubMedCentralGoogle Scholar
  77. Olofsson, H., J. Ripa & N. Jonzén, 2009. Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proceedings of the Royal Society B: Biological Sciences 276: 2963–2969.PubMedGoogle Scholar
  78. Ortells, R., A. Gómez & M. Serra, 2003. Coexistence of cryptic rotifer species: ecological and genetic characterisation of Brachionus plicatilis. Freshwater Biology 48: 2194–2202.Google Scholar
  79. Pearman, P. B., A. Guisan, O. Broennimann & C. Randin, 2008. Niche dynamics in space and time. Trends in Ecology and Evolution 23: 149–158.PubMedGoogle Scholar
  80. Philippi, T., 1993a. Bet-hedging germination of desert annuals—beyond the first year. The American Naturalist 142: 474–487.PubMedGoogle Scholar
  81. Philippi, T., 1993b. Bet-hedging germination of desert annuals: variation among populations and maternal effects in Lepidium lasiocarpum. The American Naturalist 142: 488–507.PubMedGoogle Scholar
  82. Philippi, T. & J. Seger, 1989. Hedging one’s evolutionary bets, revisited. Trends in Ecology and Evolution 4: 41–44.PubMedGoogle Scholar
  83. Philippi, T., M. A. Simovich, E. T. Bauder & J. A. Moorad, 2001. Habitat ephemerality and hatching fractions of a diapausing anostracan (Crustacea: Branchiopoda). Israel Journal of Zoology 47(4): 387–395.Google Scholar
  84. Pinceel, T., W. Hawinkel, E. Wynants, L. Brendonck & B. Vanschoenwinkel, 2017. Habitat uncertainty explains variation in offspring provisioning strategies in a temporary pond crustacean. Hydrobiologia 801: 141–151.Google Scholar
  85. Pourriot, R., 1963. Influence du rythme nycthéméral sur le cycle sexuel de quelques Rotifères. Comptes Rendus de l’Académie des Sciences Paris 256: 5216–5219.Google Scholar
  86. Pourriot, R. & P. Clément, 1975. Influence de la dureé de l’éclairement quotidien sur le taux de femelles mictiques chez Notommata copeus Ehr. (Rotifère). Oecologia 22: 67–77.PubMedGoogle Scholar
  87. Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.Google Scholar
  88. Pourriot, R., C. Rougier & D. Benest, 1986. Influence de la température sur la reproduction et la résponse mictique a la photopériode chez le rotifère Notommata copeus Ehrb. Vie Milieu 36: 37–43.Google Scholar
  89. Sasaki, A. & S. P. Ellner, 1997. Quantitative genetic variance maintained by fluctuating selection with overlapping generations: variance components and covariances. Evolution 51: 682–696.PubMedGoogle Scholar
  90. Scheuerl, T. & C. P. Stelzer, 2013. Patterns and dynamics of rapid local adaptation and sex in varying habitat types in rotifers. Ecology and Evolution 3: 4253–4264.PubMedPubMedCentralGoogle Scholar
  91. Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 181: 291–306.Google Scholar
  92. Schröder, T., S. Howard, M. L. Arroyo & E. J. Walsh, 2007. Sexual reproduction and diapause of Hexarthra sp. (Rotifera) in short-lived ponds in the Chihuahuan Desert. Freshwater Biology 52: 1033–1042.Google Scholar
  93. Seger, J. & H. J. Brockmann, 1987. What is bet-hedging? In Harvey, P. J. & L. Partridge (eds), Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford: 182–211.Google Scholar
  94. Serra, M. & M. J. Carmona, 1993. Mixis strategies and resting egg production of rotifers living in temporally-varying habitats. Hydrobiologia 255/256: 117–126.Google Scholar
  95. Serra, M., A. Gómez & M. J. Carmona, 1998. Ecological genetics of Brachionus sympatric sibling species. Hydrobiologia 387: 373–384.Google Scholar
  96. Serra, M. & C. E. King, 1999. Optimal rates of bisexual reproduction in cyclical parthenogens with density-dependent growth. Journal of Evolutionary Biology 12: 263–271.Google Scholar
  97. Serra, M., T. W. Snell & C. E. King, 2004. The timing of sex in cyclical parthenogentic rotifers. In Moya, A. & E. Font (eds), Evolution: from molecules to ecosystems. Oxford University Press, Oxford.Google Scholar
  98. Serra, M., T. W. Snell & J. J. Gilbert, 2005. Delayed mixis in rotifers: an adaptive response to the effects of density dependent sex on population growth. Journal of Plankton Research 27: 37–45.Google Scholar
  99. Serra, M., H. A. Smith, J. S. Weitz & T. W. Snell, 2011. Analysing threshold effects in the sexual dynamics of cyclically parthenogenetic rotifer populations. Hydrobiologia 662: 121–130.Google Scholar
  100. Serra, M., T. W. Snell & R. L. Wallace, 2018. Reproduction, overview by phylogeny: Rotifera. In Skinner, M. K. (ed.), Encyclopedia of Reproduction, Vol. 6. Elsevier: Academic Press, Amsterdam: 513–521.Google Scholar
  101. Smith, H. A. & T. Snell, 2012. Rapid evolution of sex frequency and dormancy as hydroperiod adaptations. Journal of Evolutionary Biology 25: 2501–2510.PubMedPubMedCentralGoogle Scholar
  102. Simons, A. M., 2009. Fluctuating natural selection accounts for the evolution of diversification bet hedging. Proceedings of the Royal Society of London B: Biological Sciences 276: 1987–1992.Google Scholar
  103. Simons, A. M., 2011. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proceedings of the Royal Society of London B: Biological Sciences 278: 1601–1609.Google Scholar
  104. Simons, A. M. & M. O. Johnson, 2003. Suboptimal timing of reproduction in Lobelia inflata may be a conservative bet-hedging strategy. Journal of Evolutionary Biology 16: 233–243.PubMedGoogle Scholar
  105. Snell, T. W. & E. M. Boyer, 1988. Thresholds for mictic female production in the rotifer Brachionus plicatilis (Muller). Journal of Experimental Marine Biology and Ecology 124: 73–78.Google Scholar
  106. Snell, T. W. & B. L. Garman, 1986. Encounter probabilities between male and female rotifers. Journal of Experimental Marine Biology and Ecology 97: 221–230.Google Scholar
  107. Snell, T. W., J. Kubanek, W. Carter, A. B. Payne, J. Kim, M. K. Hicks & C. P. Stelzer, 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.Google Scholar
  108. Spencer, M., N. Colegrave & S. S. Schwartz, 2001. Hatching fraction and timing of resting stage production in seasonal environments: effects of density dependence and uncertain season length. Journal of Evolutionary Biology 14: 357–367.Google Scholar
  109. Stelzer, C. P., 2005. Evolution of rotifer life histories. Hydrobiologia 546: 335–346.Google Scholar
  110. Tarazona, E., E. M. García-Roger & M. J. Carmona, 2017. Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126: 1162–1172.Google Scholar
  111. Tian, X., G. J. He, P. Hu, L. Chen, C. Tao, Y. L. Cui, L. Shen, W. Ke, H. Xu, Y. Zhao & Q. Xu, 2018. Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nature Microbiology 3: 698–707.PubMedGoogle Scholar
  112. Tollrian, R. & C. D. Harvell, 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.Google Scholar
  113. Young, J. P. W., 1979. Enzyme polymorphism and cyclic parthenogenesis in Daphnia magna. ii. Heterosis following sexual reproduction. Genetics 92: 971–982.PubMedPubMedCentralGoogle Scholar
  114. Yerushalmi, S. & R. M. Green, 2009. Evidence for the adaptive significance of circadian rhythms. Ecology letters 12: 970–981.PubMedGoogle Scholar
  115. Vasseur, D. A. & K. S. McCann, 2007. The Impact of Environmental Variability on Ecological Systems. Springer, Berlin.Google Scholar
  116. Venable, D. L. & J. S. Brown, 1988. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. The American Naturalist 131: 360–384.Google Scholar
  117. Walczyńska, A., L. Franch-Gras & M. Serra, 2017. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796: 191–200.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
  2. 2.School of Environmental SciencesUniversity of HullHullUK

Personalised recommendations