Land use and land cover control on the spatial variation of dissolved organic matter across 41 lakes in Mississippi, USA

  • M. S. Sankar
  • Padmanava DashEmail author
  • YueHan Lu
  • Andrew E. Mercer
  • Gray Turnage
  • Cory M. Shoemaker
  • Shuo Chen
  • Robert J. Moorhead
Primary Research Paper


While dissolved organic matter (DOM) is an important indicator of water quality, land use and land cover (LULC) of watersheds define the source, quality, and quantity of DOM delivered to a waterbody. This study examined the influence of various LULC classes in the spatial distribution of DOM in 41 lakes across the state of Mississippi. To scale the influence of LULC classes on DOM distribution, we have classified 41 lakes into five clusters based on DOM compositions determined by parallel factor analysis. Four major DOM compositions including terrestrial humic-like (C1), microbial humic-like (C2), soil-derived humic-like (C3), and tryptophan-like or tyrosine like (C4) components were identified. Higher amounts of terrestrial humic-like and soil-derived humic-like DOM compositions were observed in lakes within watersheds dominated by forested, barren, wetlands, or agricultural areas with exposed unconsolidated soil. Higher amounts of microbial humic-like composition were observed in lakes surrounded by hay/pasture, rangeland, and urbanized areas. Additionally, protein-like DOM and ammonia were more enriched in larger lakes, indicating the influences of photochemical reactions. High amounts of forested areas and higher concentrations of terrestrial humic-like DOM composition were identified in all lakes suggesting forested areas in the watershed as the principal source of DOM in Mississippi lakes.


Dissolved organic matter Land use and land cover Watershed PARAFAC Mississippi PCA 



The research was supported by the faculty start-up grant to Dr. Padmanava Dash and funding to Mr. Gray Turnage from the U.S. Fish and Wildlife Service through the Mississippi Department of Environmental Quality. The authors are thankful to Scott Landon Sanders of the Department of Geosciences, Mississippi State University for his help during watershed delineation and to Sathish Samiappan, David Young, Nick Bailey, Sean Meachum, Ashley Kosturock, Louis Wasson, Sam Hansen, and Mary Nunenmacher for their assistance with sample collection from field sites.

Supplementary material

10750_2019_4174_MOESM1_ESM.docx (607 kb)
Supplementary material 1 (DOCX 607 kb)


  1. Baker, A. & R. G. M. Spencer, 2004. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Science of the Total Environment 333: 217–232.PubMedCrossRefGoogle Scholar
  2. Bouwman, L., K. K. Goldewijk, A. H. W. B. Klaas, W. Van Der Hoek, D. P. Van Vuuren, J. Willems, M. C. Rufino & E. Stehfest, 2011. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences 110: 20882–20887.CrossRefGoogle Scholar
  3. Brooks, P. D., D. M. Mcknight & K. E. Bencala, 1999. The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments m−2 in the circumneutral basin and 17. 8 g C m−2 in the catchment by pyrite relationship betw. Water Resources Research 35: 1895–1902.CrossRefGoogle Scholar
  4. Brookshire, E. N. J., H. M. Valett, S. A. Thomas & J. R. Webster, 2005. Coupled cycling of dissolved organic nitrogen and carbon in a forest stream. Ecology 86: 2487–2496.CrossRefGoogle Scholar
  5. Cai, W.-J., X. Hu, W.-J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W.-C. Chou, W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai & G.-C. Gong, 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4: 766–770.CrossRefGoogle Scholar
  6. Cleveland, C. C., J. C. Neff, A. R. Townsend & E. Hood, 2004. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7: 275–285.CrossRefGoogle Scholar
  7. Coble, P. G., C. E. Del Castillo & B. Avril, 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Research Part II: topical Studies in Oceanography 45: 2195–2223.CrossRefGoogle Scholar
  8. Curtis, P. J., 1998. Climatic and hydrologic control of DOM concentration and quality in lakes. In Hessen, D. O. & L. J. Tranvik (eds), Aquatic Humic Substances. Ecological Studies (Analysis and Synthesis), Vol. 133. Springer, Berlin.Google Scholar
  9. Dash, P., S. Silwal, J. O. Ikenga, J. L. Pinckney, Z. Arslan & R. E. Lizotte, 2015. Water quality of four major lakes in Mississippi, USA: impacts on human and aquatic ecosystem health. Water (Switzerland) 7: 4999–5030.Google Scholar
  10. Duan, S. & B. S. Thomas, 2006. Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the lower Mississippi and Pearl Rivers. Estuaries and Coasts 29: 427–442.CrossRefGoogle Scholar
  11. Graeber, D., I. G. Boëchat, F. Encina-Montoya, C. Esse, J. Gelbrecht, G. Goyenola, B. Gücker, M. Heinz, B. Kronvang, M. Meerhoff, J. Nimptsch, M. T. Pusch, R. C. S. Silva, D. Von Schiller & E. Zwirnmann, 2015. Global effects of agriculture on fluvial dissolved organic matter. Scientific Reports Nature Publishing Group 5: 16328.CrossRefGoogle Scholar
  12. Hansen, A. M., T. E. C. Kraus, B. A. Pellerin, J. A. Fleck, B. D. Downing & B. A. Bergamaschi, 2016. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnology and Oceanography 61: 1015–1032.CrossRefGoogle Scholar
  13. Hosen, J. D., A. W. Armstrong & M. A. Palmer, 2018. Dissolved organic matter variations in coastal plain wetland watersheds: the integrated role of hydrological connectivity, land use, and seasonality. Hydrological Processes 32: 1664–1681.CrossRefGoogle Scholar
  14. Hu, Y., Y. Lu, J. W. Edmonds, C. Liu, S. Wang, O. Das, J. Liu & C. Zheng, 2016. Hydrological and land use control of watershed exports of DOM in a large arid river basin in Northwestern China. Journal of Geophysical Research: Biogeosciences 121: 466–478.Google Scholar
  15. Hu, Y., Y. Lu, C. Liu, P. Shang, J. Liu & C. Zheng, 2017. Sources and dynamics of dissolved inorganic carbon, nitrogen, and phosphorus in a large agricultural River Basin in arid Northwestern China. Water (Switzerland) 9: 415.Google Scholar
  16. Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J. M. Froidefond & E. Parlanti, 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry Elsevier Ltd. 40: 706–719.CrossRefGoogle Scholar
  17. Jaffé, R., Y. Yamashita, N. Maie, W. T. Cooper, T. Dittmar, W. K. Dodds, J. B. Jones, T. Myoshi, J. R. Ortiz-Zayas, D. C. Podgorski & A. Watanabe, 2012. Dissolved organic matter in headwater streams: compositional variability across climatic regions of North America. Geochimica et Cosmochimica Acta 94: 95–108.CrossRefGoogle Scholar
  18. Johnes, P. J., 1996. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. Journal of Hydrology 183: 323–349.CrossRefGoogle Scholar
  19. Kalbitz, K., J. Schmerwitz, D. Schwesig & E. Matzner, 2003. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113: 273–291.CrossRefGoogle Scholar
  20. Keul, N., J. W. Morse, R. Wanninkhof, D. K. Gledhill & T. S. Bianchi, 2010. Carbonate chemistry dynamics of surface waters in the Northern Gulf of Mexico. Aquatic Geochemistry 16: 337–351.CrossRefGoogle Scholar
  21. Khamis, K., C. Bradley & D. M. Hannah, 2017. Understanding dissolved organic matter dynamics in urban catchments: insights from in situ fluorescence sensor technology. Wiley Interdisciplinary Reviews: Water e1259: 1–14.Google Scholar
  22. Kim, R. H., J. Lee & H. W. Chang, 2003. Characteristics of organic matter as indicators of pollution from small-scale livestock and nitrate contamination of shallow groundwater in an agricultural area. Hydrological Processes 17: 2485–2496.CrossRefGoogle Scholar
  23. Kothawala, D. N., X. Ji, H. Laudon, A. M. Ågren, M. N. Futter, S. J. Köhler & L. J. Tranvik, 2015. The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams. Journal of Geophysical Research G: Biogeosciences 120: 1491–1505.Google Scholar
  24. Lewis, D. J., M. J. Singer, R. A. Dahlgren & K. W. Tate, 2006. Nitrate and sediment fluxes from a California Rangeland Watershed. Journal of Environment Quality 35: 2202.CrossRefGoogle Scholar
  25. Lottig, N. R., E. H. Stanley & J. T. Maxted, 2012. Assessing the influence of upstream drainage lakes on fluvial organic carbon in a wetland-rich region. Journal of Geophysical Research: Biogeosciences 117: 1–10.CrossRefGoogle Scholar
  26. Lu, Y., J. E. Bauer, E. A. Canuel, Y. Yamashita, R. M. Chambers & R. Jaffé, 2013. Photochemical and microbial alteration of dissolved organic matter in temperate headwater streams associated with different land use. Journal of Geophysical Research: Biogeosciences 118: 566–580.Google Scholar
  27. Lu, Y. H., J. E. Bauer, E. A. Canuel, R. M. Chambers, Y. Yamashita, R. Jaffé & A. Barrett, 2014a. Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry 119: 275–292.CrossRefGoogle Scholar
  28. Lu, Y. H., E. A. Canuel, J. E. Bauer & R. M. Chambers, 2014b. Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. Aquatic Sciences 76: 419–436.CrossRefGoogle Scholar
  29. Lu, Y. H., J. W. Edmonds, Y. Yamashita, B. Zhou, A. Jaegge & M. Baxley, 2015. Spatial variation in the origin and reactivity of dissolved organic matter in Oregon-Washington coastal waters. Ocean Dynamics 65: 17–32.CrossRefGoogle Scholar
  30. McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe & D. T. Andersen, 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.CrossRefGoogle Scholar
  31. Mekonnen, M. M. & A. Y. Hoekstra, 2017. Global anthropogenic phosphorus loads to fresh water and associated grey water footprints and water pollution levels: a high-resolution global study. Water Resources Research. Scholar
  32. Molinero, J. & R. A. Burke, 2009. Effects of land use on dissolved organic matter biogeochemistry in Piedmont headwater streams of the southeastern united states. Hydrobiologia 635: 289–308.CrossRefGoogle Scholar
  33. Mostofa, K. M. G., C. Liu, M. A. Mottaleb, G. Wan, H. Ogawa, D. Vione, T. Yoshioka & F. Wu, 2013. Photobiogeochemistry of organic matter. In Mostofa, K. M. G., T. Yoshioka, A. Mottaleb & D. Vione (eds), Photobiogeochemistry of Organic Matter, Environmental Science and Engineering. Springer, Berlin: 1–135.CrossRefGoogle Scholar
  34. Nelson, N. B. & D. A. Siegel, 2013. The global distribution and dynamics of chromophoric dissolved organic matter. Annual Review of Marine Science 5: 447–476.PubMedCrossRefGoogle Scholar
  35. Nielsen, A., D. Trolle, M. Søndergaard, T. L. Lauridsen, J. E. Olesen, E. Jeppesen, A. Nielsen, D. Trolle, M. Sndergaard, T. L. Lauridsen, R. Bjerring, E. Olesen & E. Jeppesen, 2012. Watershed land use effects on lake water quality in Denmark. Ecological Applications 22: 1187–1200.PubMedCrossRefGoogle Scholar
  36. Ohno, T., 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology 36: 742–746.CrossRefGoogle Scholar
  37. Osburn, C. L., J. N. Atar, J. N. Boyd & M. T. Montgomery, 2018. Antecedent precipitation enables increases in bacterial processing of terrestrial dissolved organic matter in a North Carolina estuary. Estaurine Coastal and Shelf Science in review Elsevier 221: 119–131.CrossRefGoogle Scholar
  38. Parlanti, E., K. Wo, L. Geo & M. Lamotte, 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry 31: 1765–1781.CrossRefGoogle Scholar
  39. Parr, T. B., C. S. Cronan, T. Ohno, S. E. G. Findlay, S. M. C. Smith & K. S. Simon, 2015. Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnology and Oceanography 60: 885–900.CrossRefGoogle Scholar
  40. Peterson, J. A., W. H. McDowell & J. C. Neff, 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In Findlay, S. E. G. & R. L. Sinsabaugh (eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, Amsterdam: 25–70.CrossRefGoogle Scholar
  41. Petrone, K. C., J. B. Fellman, E. Hood, M. J. Donn & P. F. Grierson, 2011. The origin and function of dissolved organic matter in agro-urban coastal streams. Journal of Geophysical Research: Biogeosciences 116: G01028.CrossRefGoogle Scholar
  42. Pullanikkatil, D., L. G. Palamuleni & T. M. Ruhiiga, 2015. Impact of land use on water quality in the Likangala catchment, southern Malawi. African Journal of Aquatic Science 40: 277–286.CrossRefGoogle Scholar
  43. Quirós, R., 2003. The relationship between nitrate and ammonia concentrations in the pelagic zone of lakes. Limnetica 22: 37–50.Google Scholar
  44. R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  45. Rousseeuw, P. J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20: 53–65.CrossRefGoogle Scholar
  46. Sankar, M. S., P. Dash, Y. H. Lu, V. Paul, A. E. Mercer, Z. Arslan, J. J. Varco & J. C. Rodgers, 2019a. Dissolved organic matter and trace element variability in a blackwater-fed bay following precipitation. Estuarine, Coastal and Shelf Science 231: 106452.CrossRefGoogle Scholar
  47. Sankar, M. S., P. Dash, S. Singh, Y. Lu, A. E. Mercer & S. Chen, 2019b. Effect of photo-biodegradation and biodegradation on the biogeochemical cycling of dissolved organic matter across diverse surface water bodies. Journal of Environmental Sciences Elsevier 77: 130–147.CrossRefGoogle Scholar
  48. Shang, P., Y. H. Lu, Y. X. Du, R. Jaffé, R. H. Findlay & A. Wynn, 2018. Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Science of the Total Environment Elsevier 612: 1442–1453.CrossRefGoogle Scholar
  49. Singh, S., S. Inamdar & M. Mitchell, 2015. Changes in dissolved organic matter (DOM) amount and composition along nested headwater stream locations during baseflow and stormflow. Hydrological Processes 29: 1505–1520.CrossRefGoogle Scholar
  50. Singh, S., P. Dash, S. Silwal, G. Feng, A. Adeli & R. J. Moorhead, 2017. Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments. Environmental Science and Pollution Research Environmental Science and Pollution Research. Scholar
  51. Singh, S., P. Dash, M. S. Sankar, S. Silwal, Y. H. Lu, P. Shang & R. J. Moorhead, 2018. Hydrological and biogeochemical controls of seasonality in dissolved organic matter delivery to a blackwater estuary. Estuaries and Coasts 42: 439–454.CrossRefGoogle Scholar
  52. Spencer, R. G. M., G. R. Aiken, M. M. Dornblaser, K. D. Butler, R. M. Holmes, G. Fiske, P. J. Mann & A. Stubbins, 2013. Chromophoric dissolved organic matter export from U.S. rivers. Geophysical Research Letters 40: 1575–1579.CrossRefGoogle Scholar
  53. Stedmon, C. A. & R. Bro, 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology & Oceanography: Methods 6: 572–579.Google Scholar
  54. Stedmon, C. A., S. Markager, L. Tranvik, L. Kronberg, T. Slätis & W. Martinsen, 2007. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Marine Chemistry 104: 227–240.CrossRefGoogle Scholar
  55. Toming, K., L. Tuvikene, S. Vilbaste, H. Agasild, M. Viik, A. Kisand, T. Feldmann, T. Martma, R. I. Jones & T. Nõges, 2013. Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment. Limnology and Oceanography 58: 1259–1270.CrossRefGoogle Scholar
  56. Van Stan, J. T., S. Wagner, F. Guillemette, A. Whitetree, J. Lewis, L. Silva & A. Stubbins, 2017. Temporal dynamics in the concentration, flux, and optical properties of tree-derived dissolved organic matter in an epiphyte-laden oak-cedar forest. Journal of Geophysical Research: Biogeosciences 122: 2982–2997.Google Scholar
  57. Wang, Y., Y. Xu, R. G. M. Spencer, P. Zito, A. Kellerman, D. Podgorski, W. Xiao, D. Wei, H. Rashid & Y. Yang, 2018. Selective leaching of dissolved organic matter from alpine permafrost soils on the Qinghai-Tibetan Plateau. Journal of Geophysical Research: Biogeosciences 123: 1–12.Google Scholar
  58. Welti, N., M. Striebel, A. J. Ulseth, W. F. Cross, S. DeVilbiss, P. M. Glibert, L. Guo, A. G. Hirst, J. Hood, J. S. Kominoski, K. L. MacNeill, A. S. Mehring, J. R. Welter & H. Hillebrand, 2017. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Frontiers in Microbiology 8: 1298.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Wen, Z., K. Song, Y. Shang, Y. Zhao, C. Fang & L. Lyu, 2018. Differences in the distribution and optical properties of DOM between fresh and saline lakes in a semi-arid area of Northern China. Aquatic Sciences Springer International Publishing 80: 2–12.Google Scholar
  60. Wilson, H. F. & M. A. Xenopoulos, 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience Nature Publishing Group 2: 37–41.CrossRefGoogle Scholar
  61. Yamashita, Y. & R. Jaffé, 2008. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environmental Science & Technology 42: 7374–7379.CrossRefGoogle Scholar
  62. Yamashita, Y., L. J. Scinto, N. Maie, & R. Jaffe, 2010. Dissolved organic matter characteristics across a subtropical wetland’s landscape: Application of optical properties in the assessment of environmental dynamics. Ecosystems 13: 1006–1019.CrossRefGoogle Scholar
  63. Yamashita, Y., B. D. Kloeppel, J. Knoepp, G. L. Zausen & R. Jaffé, 2011. Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems 14: 1110–1122.CrossRefGoogle Scholar
  64. Yu, H., H. Liang, F. Qu, Z. Han, S. Shao, H. Chang, & G. Li, 2015. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix. Scientific Reports Nature Publishing Group 5: 10207.CrossRefGoogle Scholar
  65. Zhang, Y., X. Gao, W. Guo, J. Zhao & Y. Li, 2018. Origin and dynamics of dissolved organic matter in a mariculture area suffering from summertime hypoxia and acidification. Frontiers in Marine Science 5: 325.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeosciencesMississippi State UniversityMississippi StateUSA
  2. 2.Department of Geological SciencesUniversity of AlabamaTuscaloosaUSA
  3. 3.Geosystems Research Institute and Northern Gulf InstituteMississippi State UniversityMississippi StateUSA
  4. 4.Department of BiologySlippery Rock UniversitySlippery RockUSA

Personalised recommendations