Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts


Mangrove forest encroachment into coastal marsh habitats has been described in subtropical regions worldwide in recent decades. To better understand how soil processes may influence vegetation change, we studied soil surface elevation change, accretion rates, and soil subsurface change across a coastal salinity gradient in Florida, USA, an area with documented mangrove encroachment into saline marshes. Our aim was to identify if variations in the soil variables studied exist and to document any associated vegetation shifts. We used surface elevation tables and marker horizons to document the soil variables over 5 years in a mangrove-to-marsh transition zone or ecotone. Study sites were located in three marsh types (brackish, salt, and transition) and in riverine mangrove forests. Mangrove forest sites had significantly higher accretion rates than marsh sites and were the only locations where elevation gain occurred. Significant loss in surface elevation occurred at transition and salt marsh sites. Transition marshes, which had a significantly higher rate of shallow subsidence compared to other wetland types, appear to be most vulnerable to submergence or to a shift to mangrove forest. Submergence can result in herbaceous vegetation mortality and conversion to open water, with severe implications to the quantity and quality of wetland services provided.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Andres, K. D., 2016. Coastal wetland geomorphic and vegetation change: effects of sea-level rise and water management on brackish marshes. M.S. Thesis: Fort Myers, FL, Florida Gulf Coast University: 191 pp.

  2. Andres, K. D., M. Savarese, B. Bovard & M. Parsons, 2019. Coastal wetland geomorphic and vegetation change: effects of sea-level rise and water management on brackish marshes. Estuaries and Coasts 42: 1308–1327.

  3. Anisfeld, S. C., T. D. Hill & D. R. Cahoon, 2016. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuarine, Coastal and Shelf Science 170: 145–154.

  4. Armitage, A. R., W. E. Highfield, S. D. Brody & P. Louchouarn, 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS ONE 10: e0125404.

  5. Bargar, N. N., S. R. Archer, J. L. Campbell, C. Huang, J. A. Morton & A. K. Knapp, 2011. Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research 116: G00K07.

  6. Baustian, J. J., I. A. Mendelssohn & M. A. Hester, 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18: 3377–3382.

  7. Bianchi, T. S., M. A. Allison, J. Zhao, R. S. Comeaux, R. A. Feagin & R. W. Kulawardhana, 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science 119: 7–16.

  8. Blasco, F., P. Saenger & E. Janodet, 1996. Mangroves as indicators of coastal change. Catena 27: 167–178.

  9. Booth, A. C., L. E. Soderqvist & M. C. Berry, 2014. Flow monitoring along the western Tamiami trail between County Road 92 and State Road 29 in support of the comprehensive Everglades Restoration Plan, 2007–2010. U.S. Geological Survey Data Series 831, U.S. Geological Survey, Reston, Virginia.

  10. Brown, R. B., E. L. Stone & V. W. Carlisle, 1990. Soils. In Meyers, R. L. & J. J. Ewel (eds), Ecosystems of Florida. University of Central Florida Press, Orlando: 35–69.

  11. Cahoon, D. R., 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084.

  12. Cahoon, D. R. & R. E. Turner, 1989. Accretion and canal impacts in a rapidly subsiding wetland II: feldspar marker horizon technique. Estuaries 12: 260–268.

  13. Cahoon, D. R. & J. C. Lynch, 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves and Salt Marshes 1: 173–186.

  14. Cahoon, D. R., D. J. Reed & J. W. Day Jr., 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

  15. Cahoon, D. R., J. R. French, T. Spencer, D. Reed & I. Möhher, 2000. Vertical accretion versus elevational adjustments in UK saltmarshes: an evaluation of alternative methodologies. In Pye, K. & J. R. L. Allen (eds), Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology. Special Publication 175. The Geographical Society of London, London: 223–238.

  16. Cahoon, D. R., P. Hensel, J. Rybczyk, K. L. McKee, C. E. Proffitt & B. C. Perez, 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91: 1093–1105.

  17. Cahoon, D. R., J. C. Lynch, B. C. Perez, B. Segura, R. D. Holland, C. Stelly, G. Stephenson & P. Hensel, 2002. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72: 734–739.

  18. Cannicci, S., D. Burrows, S. Fratini, T. J. Smith III, J. Offenberg & F. Dahdouh-Guebas, 2008. Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquatic Botany 89: 186–200.

  19. Cavanaugh, K. C., J. D. Parker, S. C. Cook-Patton, I. C. Feller, A. P. Williams & J. R. Kellner, 2015. Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Global Change Biology 21: 1928–1938.

  20. Chmura, G. L., S. C. Anisfeld, D. R. Cahoon & J. C. Lynch, 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1–12.

  21. Clarke, P. J. & R. A. Kerrigan, 2002. The effects of seed predators on the recruitment of mangroves. Journal of Ecology 90: 728–736.

  22. Coldren, G. A., C. R. Barreto, D. D. Wykoff, E. M. Morrissey, J. A. Langley, I. C. Feller & S. K. Chapman, 2016. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology 97: 3167–3175.

  23. Comeaux, R. S., M. A. Allison & T. S. Bianchi, 2012. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96: 81–95.

  24. Crosby, S. C., D. F. Sax, M. E. Palmer, H. S. Booth, L. A. Deegan, M. D. Bertness & H. M. Leslie, 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuarine, Coastal and Shelf Science 181: 93–99.

  25. Dangendorf, S., M. Marcos, G. Wöppelmann, C. P. Conrad, T. Frederikse & R. Riva, 2017. Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences 114: 5941–5946.

  26. Day Jr., J. W., L. D. Britsch, S. R. Hawes, G. P. Shaffer, D. J. Reed & D. Cahoon, 2000. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23: 425–438.

  27. Day, J. W., G. P. Kemp, D. J. Reed, D. R. Cahoon, R. M. Boumans, J. J. Suhayda & R. Gambrell, 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecological Engineering 37: 229–240.

  28. DeLaune, R. D., J. A. Nyman & W. H. Patrick Jr., 1994. Peat collapse, ponding, and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

  29. Donnelly, M. & L. Walters, 2014. Trapping of Rhizophora mangle propagules by coexisting early successional species. Estuaries and Coasts 37: 1562–1571.

  30. Donoghue, J. F., 2011. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Climatic Change 107: 17–33.

  31. Doughty, C. L., J. A. Langley, W. S. Walker, I. C. Feller, R. Schaub & S. K. Chapman, 2016. Mangrove range expansion rapidly increases coastal carbon storage. Estuaries and Coasts 39: 385–396.

  32. Doyle, T. W., T. J. Smith III & M. B. Robblee, 1995. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA. Journal of Coastal Research SI 21: 159–169.

  33. Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa & N. Marba, 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961–968.

  34. Duever, M. J., J. F. Meeder, L. C. Meeder & J. M. McCollom, 1994. The climate of south Florida and its role in shaping the Everglades ecosystem. In Davis, S. M. & J. C. Ogden (eds), Everglades, the ecosystem and its restoration. St. Lucie Press, Delray Beach: 225–248.

  35. Duke, N. C., J. M. Kovacs, A. D. Griffiths, L. Preece, D. J. E. Hill, P. van Oosterzee, J. Mackenzie, H. S. Morning & D. Burrows, 2017. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Marine and Freshwater Research 68: 1816–1829.

  36. Feher, L. C., M. J. Osland, K. T. Griffith, J. B. Grace, R. J. Howard, C. L. Stagg, N. M. Enwright, K. W. Krauss, C. A. Gabler, R. H. Day & K. Rogers, 2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8: e01956.

  37. Flower, H., M. Rains & C. Fits, 2017. Visioning the future: scenarios modeling of the Florida coastal Everglades. Environmental Management 60: 989–1009.

  38. Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson & C. S. Holling, 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology and Systematics 35: 557–581.

  39. Fraser, L. H. & J. P. Karnezis, 2005. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water depth differences. Wetlands 25: 520–530.

  40. Gabler, C. A., M. J. Osland, J. B. Grace, C. L. Stagg, R. H. Day, S. B. Hartley, N. M. Enwright, A. S. From, M. L. McCoy & J. L. McLeod, 2017. Macroclimate change expected to transform coastal wetland ecosystems this century. Nature Climate Change Letters 7: 142–147.

  41. Guo, H., C. Weaver, S. P. Charles, A. Whitt, S. Dastidar, P. D’Odorico, J. D. Fuentes, J. S. Kominoski, A. R. Armitage & S. C. Pennings, 2017. Coastal regime shifts: rapid response of coastal wetlands to changes in mangrove cover. Ecology 98: 762–772.

  42. Guo, H., Y. Zhang, L. Zhenjiang & S. C. Pennings, 2013. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology 19: 2765–2774.

  43. Henry, K. M. & R. R. Twilley, 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research 29: 1273–1283.

  44. Howard, R. J., K. W. Krauss, N. Cormier, R. H. Day, J. Biagas & L. Allain, 2015. Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers. Journal of Vegetation Science 26: 1198–1211.

  45. Howard, R. J., J. Biagas & L. Allain, 2016. Growth of common brackish marsh macrophytes under altered hydrologic and salinity regimes. Wetlands 36: 11–20.

  46. Howard, R. J., R. H. Day, K. W. Krauss, A. S. From, L. Allain & N. Cormier, 2017. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone. Restoration Ecology 25: 471–482.

  47. Howard, R. J., A. S. From & L. Allain, 2019. Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts. U.S. Geological Survey data release.

  48. Howard, R. J. & P. S. Rafferty, 2006. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern Gulf of Mexico, USA. Environmental and Experimental Botany 56: 301–313.

  49. Jowsey, P. C., 1966. An improved peat sampler. New Phytologist 65: 245–248.

  50. Kearny, M. S., R. E. Grace & J. C. Stevenson, 1988. Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geographical Review 78: 205–220.

  51. Kelleway, J. J., K. Cavanaugh, K. Rogers, I. C. Feller, E. Ens, C. Doughty & N. Saintilan, 2017. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology 23: 3967–3983.

  52. Kelleway, J. J., N. Saintilan, P. I. MacReadie, C. G. Skilbeck, A. Zawadzki & P. J. Ralph, 2016. Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Global Change Biology 22: 1097–1109.

  53. Kirwan, M. L. & J. P. Megonigal, 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60.

  54. Kirwan, M. & S. Temmerman, 2009. Coastal marsh response to historical and future sea-level acceleration. Quaternary Science Reviews 28: 1801–1808.

  55. Krauss, K. W., A. S. From, T. W. Doyle, T. J. Doyle & M. J. Barry, 2011. Sea-level rise and landscape change influence mangrove encroachment onto salt marsh in the Ten Thousand Islands region of Florida, USA. Journal of Coastal Conservation 15: 629–638.

  56. Krauss, K. W., A. W. J. Demopoulos, N. Cormier, A. S. From, J. P. McClain-Counts & R. R. Lewis III, 2018. Ghost forests of Marco Island: mangrove mortality driven by belowground soil structural shifts during tidal hydrologic alteration. Coastal, Estuarine and Shelf Science 212: 51–62.

  57. Krauss, K. W., K. L. McKee, C. E. Lovelock, D. R. Cahoon, N. Saintilan, R. Reef & L. Chen, 2014. How mangrove forests adjust to rising sea level. The New Phytologist 202: 19–34.

  58. Lefor, M. W., W. C. Kennard & D. L. Civco, 1987. Relationship of salt-marsh plant distributions to tidal levels in Connecticut, USA. Environmental Management 11: 61–68.

  59. Lamers, L. P. M., L. L. Govers, I. C. J. M. Janssen, J. J. M. Geurts, M. E. W. Van der Welle, M. M. Van Katwijk, T. Van der Heide, J. G. M. Roelofs & A. J. P. Smolders, 2013. Sulfide as a soil phytotoxin – a review. Frontiers in Plant Science.

  60. Lewis III, R. R., 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24: 403–418.

  61. Lewis III, R. R., E. C. Milbrandt, B. Brown, K. W. Krauss, A. S. Rovai, J. W. Beever III & L. L. Flynn, 2016. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forests management. Marine Pollution Bulletin 109: 764–771.

  62. Li, S., I. A. Mendelssohn, H. Chen & W. H. Orem, 2009. Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in the Florida Everglades? Freshwater Biology 54: 1909–1923.

  63. Lodge, T. E., 2010. The Everglades Handbook: Understanding the Ecosystem, 3rd ed. CRC Press, Boca Raton.

  64. Lonard, R. I., F. W. Judd & R. Stalter, 2013. The biological flora of coastal dunes and wetlands: Distichlis spicata (C. Linnaeus) E. Greene. Journal of Coastal Research 29: 106–117.

  65. Lovelock, C. E., I. C. Feller, R. Reef, S. Hickey & M. C. Ball, 2017. Mangrove dieback during fluctuating sea levels. Scientific Reports 7: 1680.

  66. Lugo, A. E., 1997. Old-growth mangrove forests in the United States. Conservation Biology 11: 11–20.

  67. Luo, M., J. Huang, W. Zhu & C. Tong, 2019. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia 827: 31–49.

  68. Maricle, B. R., D. R. Cobos & C. S. Campbell, 2007. Biophysical and morphological leaf adaptations to drought and salinity in salt marsh grasses. Environmental and Experimental Botany 60: 458–467.

  69. McCoy, E. D., H. R. Mushinsky, D. Johnson & W. E. Meshaka Jr., 1996. Mangrove damage caused by Hurricane Andrew on the southwestern coast of Florida. Bulletin of Marine Science 59: 1–8.

  70. Mcleod, E., G. L. Chmura, S. Bouillion, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.

  71. McKee, K. L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.

  72. McKee, K. L. & J. E. Rooth, 2008. Where temperate meets tropical: multifactorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14: 1–14.

  73. McKee, K. L. & W. C. Vervaeke, 2018. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Global Change Biology 24: 1224–1238.

  74. McKee, K. L., D. R. Cahoon & I. C. Feller, 2007a. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.

  75. McKee, K. L., J. E. Rooth & I. C. Feller, 2007b. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecological Applications 17: 1678–1693.

  76. McKee, K. L., K. Rogers & N. Saintilan, 2012. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea level. In Middleton, B. A. (ed.), Global Change and the Function and Distribution of Wetlands. Springer, Dordrecht: 63–96.

  77. Meeder, J. F., R. W. Parkinson, P. L. Ruiz & M. S. Ross, 2017. Saltwater encroachment and prediction of future ecosystem response to the Anthropocene Marine Transgression, southeast saline Everglades, Florida. Hydrobiologia 803: 29–48.

  78. Mendelssohn, I. A. & K. L. McKee, 1988. Spartina alterniflora dieback in Louisiana: time-course investigation of soil waterlogging effects. Journal of Ecology 76: 509–521.

  79. Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve & D. R. Cahoon, 2002. Response of coastal wetlands to rising sea levels. Ecology 83: 2869–2877.

  80. Morton, R. A., J. C. Bernier & J. A. Barras, 2006. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environmental Geology 50: 261–274.

  81. NOAA, 2018a. Tides and Currents, Station Information. Accessed 27 Sept 2018.

  82. NOAA, 2018b. Tides and Currents, Sea Level Trends. Accessed 20 Mar 2018.

  83. Nyman, J. A., R. D. DeLaune, H. H. Roberts & W. H. Patrick Jr., 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96: 269–279.

  84. Nyman, J. A., R. J. Walters, R. D. DeLaune & W. H. Patrick Jr., 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380.

  85. Odum, W. E. & C. C. McIvor, 1990. Mangroves. In Meyers, R. L. & J. J. Ewel (eds), Ecosystems of Florida. University of Central Florida Press, Gainesville: 517–548.

  86. Osland, M. J., R. H. Day, J. C. Larriviere & A. S. From, 2014. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLoS ONE 9: e99604.

  87. Osland, M. J., K. T. Griffith, J. C. Larriviere, L. C. Feher, D. R. Cahoon, et al., 2017. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: gaps and opportunities for developing a coordinated regional sampling network. PloS ONE 12: e0183431.

  88. Osland, M. J., N. M. Enwright, R. H. Day, C. A. Gabler, C. L. Stagg & J. B. Grace, 2016. Beyond just sea-level rise: considering macroclimate drivers within costal wetland vulnerability assessments to climate change. Global Change Biology 22: 1–11.

  89. Patterson, C. S., I. A. Mendelssohn & E. M. Swenson, 1993. Growth and survival of Avicennia germinans seedlings in a mangle/salt marsh community in Louisiana, USA. Journal of Coastal Research 9: 801–810.

  90. Pellegrini, A. F. A., W. A. Hoffman & A. C. Franco, 2014. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95: 342–352.

  91. Perry, C. L. & I. A. Mendelssohn, 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29: 396–406.

  92. Peterson, J. M. & S. S. Bell, 2012. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across and ecotone. Ecology 93: 1648–1658.

  93. Reed, D. J., 1995. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms 20: 39–48.

  94. Reed, D. J., 1999. Response of mineral and organic components of coastal marsh accretion to global climate change. Current Topics in Wetland Biogeochemistry 3: 90–99.

  95. Richard, D. R. & D. A. Friess, 2016. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences 113: 344–349.

  96. Rogers, K., N. Saintilan & H. Heijnis, 2005. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence, and sea level rise. Estuaries 28: 551–559.

  97. Rogers, K., K. M. Wilton & N. Saintilan, 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science 66: 559–569.

  98. Rogers, K., N. Saintilan, A. J. Howe & J. F. Rodríguez, 2013. Sedimentation, elevation, and marsh evolution in a southwestern Australian estuary during changing climatic conditions. Estuarine, Coastal and Shelf Science 133: 172–181.

  99. Ross, M. E., J. F. Meeder, J. P. Sah, P. L. Ruiz & G. J. Telesnicki, 2000. The southeast saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–112.

  100. Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157.

  101. Sallenger Jr., A. H., K. S. Doran & P. A. Howd, 2012. Hotspots of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888.

  102. Scharenbroch, B. C., M. L. Flores-Mangual, B. Lepore, J. G. Bockheim & B. Lowery, 2010. Tree encroachment impacts carbon dynamics in a sand prairie in Wisconsin. Soil Science Society of America Journal 74(956–96): 8.

  103. Schepers, L., M. Kirwan, G. Guntenspergen & S. Temmerman, 2017. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnology and Oceanography 62: 137–150.

  104. Sherman, R. E., T. J. Fahey & J. J. Battles, 2000. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology 88: 165–178.

  105. Sherrod, C. L., D. L. Hockaday & C. McMillan, 1986. Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas. Contributions in Marine Science 29: 27–36.

  106. Shiflet, T. N., 1963. Major ecological factors controlling plant communities in Louisiana marshes. Journal of Range Management 16: 231–235.

  107. Simpson, L. T., T. Z. Osborne, L. J. Duckett & I. C. Feller, 2017. Carbon storage along a climate induced coastal wetland gradient. Wetlands 37: 1023–1035.

  108. Simpson, L. T., C. M. Stein, T. Z. Osborne & I. C. Feller, 2019. Mangroves dramatically increase carbon storage after 3 years of encroachment. Hydrobiologia 834: 13–26.

  109. Smith III, T. J., M. B. Robblee, H. R. Wanless & T. W. Doyle, 1994. Mangroves, hurricanes, and lightning strikes. BioScience 44: 256–262.

  110. Spalding, E. A. & M. W. Hester, 2007. Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise. Estuaries and Coasts 30: 214–225.

  111. Stevens, P. W., S. L. Fox & C. L. Montague, 2006. The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management 14: 435–444.

  112. Stevenson, J. C., M. S. Kearney & E. C. Pendleton, 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology 67: 213–235.

  113. Törnqvist, T. E., D. J. Wallace, J. E. A. Storms, J. Wallinga, R. L. Van Dam, M. Blaauw, M. S. Derksen, C. J. W. Klerks, C. Meijneken & E. M. A. Snijders, 2008. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience 1: 173–176.

  114. U.S. Army Corps of Engineers, 2019. Picayune Strand Restoration Project facts and information. Accessed 1 Sept 2019.

  115. Yando, E. S., M. J. Osland, J. M. Willis, R. H. Day, K. W. Krauss & M. W. Hester, 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools. Journal of Ecology 104: 1020–1031.

  116. Yuill, B., D. Lavoie & D. J. Reed, 2009. Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research SI54: 23–36.

  117. Valle-Levinson, A., A. Dutton & J. B. Martin, 2017. Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophysical Research Letters.

  118. Visser, J. M. & E. R. Sandy, 2009. The effects of flooding on four common Louisiana marsh plants. Gulf of Mexico Science 1: 21–29.

  119. Wahl, T., F. M. Calafat & M. E. Luther, 2014. Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century. Geophysical Research Letters.

  120. Watson, E. B., H. M. Andrews, A. Fischer, M. Cencer, L. Coiro, S. Kelley & C. Wigand, 2015. Growth and photosynthesis responses of two co-occurring marsh grasses to inundation and varied nutrients. Botany 93: 671–683.

  121. Webb, E. L., D. A. Friess, K. W. Krauss, D. R. Cahoon, G. Guntenspergen & J. Phelps, 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

  122. Wilson, K. R., J. T. Kelley, B. R. Tanner & D. F. Belknap, 2010. Probing the origins and stratigraphic signature of salt ponds from north-temperate marshes in Maine, U.S.A. Journal of Coastal Research 26: 1007–1026.

  123. Zhang, Y., G. Huang, W. Wang, L. Chen & G. Lin, 2012. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 9: 588–597.

Download references


Funding for this study was provided by the U.S. Fish and Wildlife Service (Intragovernmental Agreements 4500035235, 4500081468) and the U.S. Geological Survey Ecosystems Mission Area. We thank Kevin Godsea, Wade Gurley, and Mark Danaher, U.S. Fish and Wildlife Service, for logistical and technical support. Darren Johnson, Cherokee Nation Technologies, Wetland and Aquatic Research Center, provided data analyses. Comments provided by Donald Cahoon and anonymous reviewers helped to improve the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The data are available at (Howard et al., 2019).

Author information

Correspondence to Rebecca J. Howard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Iacopo Bertocci

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howard, R.J., From, A.S., Krauss, K.W. et al. Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts. Hydrobiologia (2020).

Download citation


  • Accretion
  • Coastal marsh
  • Mangrove forest encroachment
  • Sea-level rise
  • Subsidence
  • Vegetation change