Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Metabolic analyses by metatranscriptomics highlight plasticity in phosphorus acquisition during monospecific and multispecies algal blooms

Abstract

Algal blooms have emerged as a global phenomenon affecting coastal areas, while the regulatory mechanisms are poorly understood. To explore the effects of environmental factors, especially phosphate concentrations, on the outbreak and maintenance of algal blooms, this study used a metatranscriptomic approach to analyze the molecular responses of phytoplankton during two blooms in 2013 near Qinhuangdao, China. Pico/nanophytoplanktons (< 10 μm) were dominant numerically in the two algal blooms. Significant shifts in KEGG pathway expression were observed with the succession of phytoplankton, suggesting high temporal plasticity in the expressed metabolic capacity. The KEGG pathway expression pattern in the multispecies bloom on August 22 showed higher gene expression of primary metabolic pathways and lower gene expression of secondary metabolic pathways than that in the monospecific bloom on July 20. Pico/nanophytoplankton showed species-specific transcriptional responses to the shifts in N/P ratios and phosphate concentrations. Our results demonstrate how the species specificity and temporal plasticity of resource utilization capacities enable pico/nanophytoplankton to induce monospecific and multispecies blooms under different phosphate conditions. This study provides a basis for further work on the gene responses of multispecies assemblages of algae to different environmental parameters during algal bloom succession.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

We have submitted all sequencing data used in this project to the Sequence Read Archive (SRA) database at GenBank (PRJNA357023) and will be publicly available until online published.

References

  1. Alexander, H., B. D. Jenkins, T. A. Rynearson & S. T. Dyhrman, 2015. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proceedings of the National Academy of Sciences of the United States of America 112: E2182–E2190.

  2. Alkhamis, Y. & J. G. Qin, 2013. Cultivation of Isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. Biomed Research International 2013: 983465.

  3. Andersson, A., P. Haecky & Å. Hagström, 1994. Effect of temperature and light on the growth of micro- nano- and pico-plankton: impact on algal succession. Marine Biology 120: 511–520.

  4. Beszteri, S., I. Yang, N. Jaeckisch, U. Tillmann, S. Frickenhaus, G. Glockner, A. Cembella & U. John, 2012. Transcriptomic response of the toxic prymnesiophyte Prymnesium parvum (N. Carter) to phosphorus and nitrogen starvation. Harmful Algae 18: 1–15.

  5. Buchfink, B., C. Xie & D. H. Huson, 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12: 59–60.

  6. Burns, J. A., A. Paasch, A. Narechania & E. Kim, 2015. Comparative genomics of a bacterivorous green alga reveals evolutionary causalities and consequences of phago-mixotrophic mode of nutrition. Genome Biology and Evolution 7: 3047–3061.

  7. Cao, X. H., Z. M. Yu, Z. X. Wu, F. J. Cheng, L. Y. He, Y. Q. Yuan, X. X. Song, J. L. Zhang, Y. F. Zhang & W. L. Zhang, 2018. Environmental characteristics of annual pico/nanophytoplankton blooms along the Qinhuangdao coast. Journal of Oceanology and Limnology 36: 281–292.

  8. Chen, Z. Z., J. Y. Zhang, R. Li, F. Tian, Y. T. Shen, X. Y. Xie, Q. Y. Ge & Z. H. Lu, 2018. Metatranscriptomics analysis of cyanobacterial aggregates during cyanobacterial bloom period in Lake Taihu, China. Environmental Science and Pollution Research 25(5): 4811–4825.

  9. Chiaramello, A. E. & J. W. Zyskind, 1990. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. Journal of Bacteriology 172: 2013–2019.

  10. Coleman, J. E., 1992. Structure and mechanism of alkaline phosphatase. Annual Review of Biophysics and Biomolecular Structure 21: 441–483.

  11. Cui, Y., B. J. Chen, S. M. Ren, J. F. Chen & Y. L. Song, 1996. Study on status of bio-physic-chemical environment in the Bohai Sea. Journal of Fishery Sciences of China 3: 1–12. (in Chinese with English abstract).

  12. Cuvin-Aralar, M. L., U. Focken, K. Becker & E. V. Aralar, 2004. Effects of low nitrogen-phosphorus ratios in the phytoplankton community in Laguna de Bay, a shallow eutrophic lake in the Philippines. Aquatic Ecology 38: 387–401.

  13. Dortch, Q. & T. E. Whitledge, 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions. Continental Shelf Research 12: 1293–1309.

  14. Duff, S. M. G., G. B. G. Moorhead, D. D. Lefebvre & W. C. Plaxton, 1989. Phosphate starvation inducible bypasses of adenylate and phosphate dependent glycolytic-enzymes in Brassica nigra suspension cells. Plant Physiology 90: 1275–1278.

  15. Dyhrman, S. T. & B. Palenik, 2003. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. Journal of Plankton Research 25: 1215–1225.

  16. Edgar, R. E., P. F. Morris, M. J. Rozmarynowycz, N. A. Dsouza, M. Moniruzzaman, R. A. Bourbonniere, G. S. Bullerjahn, V. Phuntumart, S. W. Wilhelm & R. M. L. McKay, 2016. Adaptations to photoautotrophy associated with seasonal ice cover in a large lake revealed by metatranscriptome analysis of a winter diatom bloom. Journal of Great Lakes Research 42: 1007–1015.

  17. Egge, J., 1998. Are diatoms poor competitors at low phosphate concentrations? Journal of Marine Systems 16(3): 191–198.

  18. Exton, J. H., 1972. Gluconeogenes. Metabolism-Clinical and Experimental 21: 945–990.

  19. Fritsen, C. H. & J. C. Priscu, 1998. Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: distribution growth rate, and temperature response of photosynthesis. Journal of Phycology 34: 587–597.

  20. Gu, B., Y. Zhen & T. Z. Mi, 2015. Characterization of phytoplankton community in the coastal waters of Qinhuangdao during brown tide. Periodical of Ocean University of China 45: 64–72.

  21. Hallegraeff, G. M., 2010. Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. Journal of Phycology 46: 220–235.

  22. Hanson, R. W. & A. J. Garber, 1972. Phosphoenolpyruvate carboxykinase. I. Its role in gluconeogenesis. The American Journal of Clinical Nutrition 25: 1010–1021.

  23. Hers, H. G. & L. Hue, 1983. Gluconeogenesis and related aspects of glycolysis. Annual Review of Biochemistry 52: 617–653.

  24. Huang, W., X. Y. Zhu, J. N. Zeng, Q. He, X. Q. Xu, J. J. Liu, Z. B. Jiang, S. Z. Dou & Q. Z. Chen, 2012. Responses in growth and succession of the phytoplankton community to different N/P ratios near Dongtou Island in the East China Sea. Journal of Experimental Marine Biology and Ecology 434: 102–109.

  25. Interlandi, S. J. & S. S. Kilham, 2001. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82: 1270–1282.

  26. Ji, N. J., L. X. Lin, L. Li, L. Y. Yu, Y. Q. Zhang, H. Luo, M. Z. Li, X. G. Shi, D. Z. Wang & S. J. Lin, 2018. Metatranscriptome analysis reveals environmental and diel regulation of a Heterosigma akashiwo (raphidophyceae) bloom. Environmental Microbiology 20: 1078–1094.

  27. Jiang, Z. B., J. J. Liu, J. F. Chen, Q. Z. Chen, X. J. Yan, J. L. Xuan & J. N. Zeng, 2014. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Research 54: 1–11.

  28. Justić, D., N. Rabalais, R. E. Turner & Q. Dortch, 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science 40: 339–356.

  29. Kanehisa, M., M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu & Y. Yamanishi, 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research 36: D480–D484.

  30. Kangro, K., K. Olli, T. Tamminen & R. Lignell, 2007. Species-specific responses of a cyanobacteria-dominated phytoplankton community to artificial nutrient limitation in the Baltic Sea. Marine Ecology Progress Series 336: 15–27.

  31. Kirkwood, D. S., A. Aminot & S. R. Carlberg, 1996. The 1994 QUASIMEME laboratory performance study: nutrients in seawater and standard solutions. Marine Pollution Bulletin 32: 640–645.

  32. Klais, R., T. Tamminen, A. Kremp, K. Spilling & K. Olli, 2011. Decadal-scale changes of dinoflagellates and diatoms in the anomalous baltic sea spring bloom. PLos ONE 6: e21567.

  33. Klemer, A. R., J. Feuillade & M. Feuillade, 1982. Cyanobacterial blooms: carbon and nitrogen limitation have opposite effects on the buoyancy of Oscillatoria. Science 215: 1629–1631.

  34. Kong, F. Z., R. C. Yu, Q. C. Zhang, T. Yan & M. J. Zhou, 2012. Pigment characterization for the 2011 bloom in Qinhuangdao implicated “brown tide” events in China. Chinese Journal of Oceanology and Limnology 30: 361–370.

  35. Kopylova, E., L. Noe & H. Touzet, 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28: 3211–3217.

  36. Kornberg, A., N. N. Rao & D. Ault-Riche, 1999. Inorganic polyphosphate: a molecule of many functions. Annual Review of Biochemistry 68: 89–125.

  37. Kruskopf, M. M. & S. Du Plessis, 2004. Induction of both acid and alkaline phosphatase activity in two green-algae (chlorophyceae) in low N and P concentrations. Hydrobiologia 513: 59–70.

  38. Laws, E. A., S. F. Pei, P. Bienfang & S. Grant, 2011. Phosphate-limited growth and uptake kinetics of the marine prasinophyte Tetraselmis suecica (Kylin) Butcher. Aquaculture 322: 117–121.

  39. Li, H. & R. Durbin, 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

  40. Liang, X. L., Y. Yang, Y. L. Wang, Y. M. Zhang, Z. N. Zhao, X. Q. Han, J. D. Zhang & W. M. Gao, 2015. Yearly changes of phytoplankton community in the ecology-monitoring area of Changli, Heibei in summer. Environmental Science 36: 1317–1325. (In Chinese with English abstract).

  41. Lin, F. A., X. W. Lu, H. Luo & M. H. Ma, 2008. History, status and characteristics of red tide in Bohai Sea. Marine Environmental Science 27: 1–5. (In Chinese with English abstract).

  42. Lin, S. J., R. W. Litaker & W. G. Sunda, 2016. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. Journal of Phycology 52: 10–36.

  43. Liu, X. J., S. S. Duan, A. F. Li, N. Xu, Z. P. Cai & Z. X. Hu, 2009. Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. Journal of Applied Phycology 21: 239–246.

  44. Liu, Z. F., V. Campbell, K. B. Heidelberg & D. A. Caron, 2016. Gene expression characterizes different nutritional strategies among three mixotrophic protists. Fems Microbiology Ecology 92: fiw106.

  45. Loebl, M., F. Colijn, J. E. E. van Beusekom, J. G. Baretta-Bekker, C. Lancelot, C. J. M. Philippart, V. Rousseau & K. H. Wiltshire, 2009. Recent patterns in potential phytoplankton limitation along the Northwest European continental coast. Journal of Sea Research 61: 34–43.

  46. Mackey, K. R. M., R. G. Labiosa, M. Calhoun, J. H. Street, A. F. Post & A. Paytan, 2007. Phosphorus availability, phytoplankton community dynamics, and taxon-specific phosphorus status in the Gulf of Aqaba, Red Sea. Limnology and Oceanography 52: 873–885.

  47. Mao, X., T. Cai, J. G. Olyarchuk & L. Wei, 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21: 3787–3793.

  48. McLean, T. I., 2013. “Eco-omics”: a review of the application of genomics, transcriptomics, and proteomics for the study of the ecology of harmful algae. Microbial Ecology 65: 901–915.

  49. Miller, C. B. & P. A. Wheeler, 2012. Biological Oceanography. Wiley, Hoboken.

  50. Mu, J. D., X. R. Zheng, Z. L. Zhao, Z. Fu, X. M. Wu, Y. J. Xi & C. L. Zhao, 2015. Ecological characteristics of phytoplankton in Qinhuangdao coastal areas during the red-tide period. Journal of Fishery Sciences of China 22: 288–301. (in Chinese with English abstract).

  51. Muller, M. N., T. W. Trull & G. M. Hallegraeff, 2017. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi. Isme Journal 11: 1777–1787.

  52. Needham, D. M. & J. A. Fuhrman, 2016. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology 1: 16005.

  53. Norrman, B., U. L. Zweifel, C. S. Hopkinson & B. Fry, 1995. Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnology and Oceanography 40: 898–907.

  54. Pearson, G. A., A. Lago-Leston, F. Canovas, C. J. Cox, F. Verret, S. Lasternas, C. M. Duarte, S. Agusti & E. A. Serrao, 2015. Metatranscriptomes reveal functional variation in diatom communities from the Antarctic Peninsula. Isme Journal 9: 2275–2289.

  55. Plaxton, W. C., 1996. The organization and regulation of plant glycolysis. Annual Review of Plant Physiology and Plant Molecular Biology 47: 185–214.

  56. Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

  57. Riebesell, U., D. A. Wolfgladrow & V. Smetacek, 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–251.

  58. Robinson, M. D. & A. Oshlack, 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11: 1–9.

  59. Robinson, M. D., D. J. McCarthy & G. K. Smyth, 2010. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.

  60. Santos, N. O., S. M. Oliveira, L. C. Alves & M. C. Cammarota, 2014. Methane production from marine microalgae Isochrysis galbana. Bioresource Technology 157: 60–67.

  61. Sieracki, M. E., C. J. Gobler, T. L. Cucci, E. C. Thier, I. C. Gilg & M. D. Keller, 2004. Pico- and nanoplankton dynamics during bloom initiation of Aureococcus in a Long Island, NY bay. Harmful Algae 3: 459–470.

  62. Silkin, V. A., L. A. Pautova & A. V. Lifanchuk, 2013. Physiological regulatory mechanisms of the marine phytoplankton community structure. Russian Journal of Plant Physiology 60: 541–548.

  63. Storey, J. D. & R. Tibshirani, 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences 100: 9440–9445.

  64. Sun, Y. Y., C. H. Wang & C. Jing, 2008. Growth inhibition of the eight species of microalgae by growth inhibitor from the culture of Isochrysis galbana and its isolation and identification. Journal of Applied Phycology 20: 315–321.

  65. Sunda, W. G. & D. R. Hardison, 2010. Evolutionary tradeoffs among nutrient acquisition, cell size, and grazing defense in marine phytoplankton promote ecosystem stability. Marine Ecology Progress Series 401: 63–76.

  66. Thomson-Bulldis, A. & D. Karl, 1998. Application of a novel method for phosphorus determinations in the oligotrophic North Pacific Ocean. Limnology and Oceanography 43: 1565–1577.

  67. Van der Grinten, E., M. Janssen, S. G. H. Simis, C. Barranguet & W. Admiraal, 2004. Phosphate regime structures species composition in cultured phototrophic biofilms. Freshwater Biology 49: 369–381.

  68. Wallace, J. C., S. Jitrapakdee & A. Chapman-Smith, 1998. Pyruvate carboxylase. International Journal of Biochemistry & Cell Biology 30: 1–5.

  69. Wang, L., Z. Feng, X. Wang, X. Wang & X. Zhang, 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26: 136–138.

  70. Wang, D., E. Y. He, G. M. Liu & Q. Z. Liu, 2013. Relationship between red tide organisms and environmental factors in the Beidaihe waters of the Qinhuangdao. Marine Forecasts 30: 1–7. (in Chinese with English abstract).

  71. Wohlrab, S., J. M. Falcke, S. J. Lin, H. Zhang, S. Neuhaus, S. Elferink, D. Voss, O. Zielinski & U. John, 2018. Metatranscriptome profiling indicates size-dependent differentiation in plastic and conserved community traits and functional diversification in dinoflagellate communities. Frontiers in Marine Science 5: 358.

  72. Wurch, L. L., E. M. Bertrand, M. A. Saito, B. A. S. Van Mooy & S. T. Dyhrman, 2011. Proteome changes driven by phosphorus deficiency and recovery in the brown tide-forming alga Aureococcus anophagefferens. PLoS ONE 6: e28949.

  73. Yong, S. C., P. Roversi, J. Lillington, F. Rodriguez, M. Krehenbrink, O. B. Zeldin, E. F. Garman, S. M. Lea & B. C. Berks, 2014. A complex iron-calcium cofactor catalyzing phosphotransfer chemistry. Science 345: 1170–1173.

  74. Young, C. L. & E. D. Ingall, 2010. Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis. Aquatic Geochemistry 16: 563–574.

  75. Zhang, J. L., 1993. Eutrophication status of the Qinghuangdao coastal areas. Marine Environmental Science 12: 59–63. (in Chinese).

  76. Zhang, Q. C., L. M. Qiu, R. C. Yu, F. Z. Kong, Y. F. Wang, T. Yan, C. J. Gobler & M. J. Zhou, 2012. Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae 19: 117–124.

  77. Zhang, Y. F., X. Y. Li, W. L. Zhang & J. L. Zhang, 2013. Spatial and temporal distribution of silicate and chlorophyll a in the coastal waters with picophytoplankton algal bloom. Ecological Science 32: 509–513. (In Chinese with English abstract).

  78. Zhang, W. L., Y. F. Zhang, J. L. Zhang & S. L. Zhao, 2014. The changes of nutrient and eutrophication of Beidaihe red tide monitoring area. Transactions of Oceanology and Limnology 1: 143–147. (in Chinese with English abstract).

  79. Zhang, G., S. Liang, X. Shi & X. Han, 2015. Dissolved organic nitrogen bioavailability indicated by amino acids during a diatom to dinoflagellate bloom succession in the Changjiang River estuary and its adjacent shelf. Marine Chemistry 176: 83–95.

  80. Zhou, M. J., Z. L. Shen & R. C. Yu, 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research 28: 1483–1489.

  81. Zhuang, Y. Y., H. Zhang, L. Hannick & S. J. Lin, 2015. Metatranscriptome profiling reveals versatile N-nutrient utilization, CO2 limitation, oxidative stress, and active toxin production in an Alexandrium fundyense bloom. Harmful Algae 42: 60–70.

Download references

Acknowledgements

We are grateful to Fangjin Cheng, Huajie Sun, Yongquan Yuan, Zaixing Wu, Zhifu Wang, Guangyuan Lu, Yang Liu, Yanfeng Li, and Jing Li from Institute of Oceanology, Chinese Academy of Sciences for sampling and logistical support. We also thank Shijun Xiao, Huan Wang, and Youzhi Mao from Frasergen in Wuhan for their help with data analysis. This work was supported by the Taishan Scholars Climbing Program of Shandong Province (2019.01–2023.12), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) [Grant Number 2018SDKJ0504-2], the Science and Technology Major Project of Guangxi [Grant Number AA17202020-4], and the NSFC-Shandong Joint Fund for Marine Science Research Centers [Grant Number U1606404].

Author information

Correspondence to Zhiming Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: David Philip Hamilton

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 340 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Yu, Z., He, L. et al. Metabolic analyses by metatranscriptomics highlight plasticity in phosphorus acquisition during monospecific and multispecies algal blooms. Hydrobiologia 847, 1071–1085 (2020). https://doi.org/10.1007/s10750-019-04169-x

Download citation

Keywords

  • Metatranscriptome
  • Algal bloom succession
  • Phosphorus utilization
  • Temporal plasticity
  • Species specificity