Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Didymosphenia geminata blooms are not exclusively driven by low phosphorus under experimental conditions

Abstract

Despite two decades of research, the cause of blooms of the diatom Didymosphenia geminata remains uncertain. Blooms have been associated with low nutrient, oligotrophic streams. In this study, we used available data from across the globe and conducted experiments to determine how D. geminata responds to soluble reactive phosphorus (SRP) concentrations. Globally, D. geminata blooms have been found in streams with SRP below 11 μg P l−1. In North America, blooms only occurred at high equivalent latitudes when SRP was very low, whereas at lower latitudes blooms were observed under higher SRP concentrations. Using an in situ experiment, we found that following physical removal of D. geminata from stones, regrowth did not occur despite low SRP concentrations. In a second experiment, we found that there were no differences in D. geminata growth between a treatment which depleted SRP and a treatment which maintained elevated springtime SRP levels. These findings indicate that D. geminata blooms do not always form when SRP is low, even when cells are present. Bloom formation that is not exclusively related to low SRP suggests additional chemical or biotic factors, specific physical conditions, a seasonal timing requirement, or some combination of these with low P that are necessary to produce blooms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aboal, M., S. Marco, E. Chaves, I. Mulero & A. Garcia-Ayala, 2012. Ultrastructure and function of stalks of the diatom Didymosphenia geminata. Hydrobiologia 695(1): 17–24.

  2. Alldredge, A. L., U. Passow & B. E. Logan, 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Research Part I-Oceanographic Research Papers 40(6): 1131–1140.

  3. Anagnostou, E. & R. M. Sherrell, 2008. MAGIC method for subnanomolar orthophosphate determination in freshwater. Limnology and Oceanography: Methods 6(1): 64–74.

  4. Beltrami, M. E., C. Cappelletti & F. Ciutti, 2008. Didymosphenia geminata (Lyngbye) M. Schmidt (Bacillariophyta) in the Danube basin: new data from the Drava river (northern Italy). Plant Biosystems 142(1): 126–129.

  5. Beville, S. T., G. N. Kerr & K. F. D. Hughey, 2012. Valuing impacts of the invasive alga Didymosphenia geminata on recreational angling. Ecological Economics 82(Supplement C): 1–10.

  6. Bothwell, M. L. & C. Kilroy, 2011. Phosphorus limitation of the freshwater benthic diatom Didymosphenia geminata determined by the frequency of dividing cells. Freshwater Biology 56(3): 565–578.

  7. Bothwell, M. L. & B. W. Taylor, 2017. Blooms of benthic diatoms in phosphorus-poor streams. Frontiers in Ecology and the Environment 15(2): 110–111.

  8. Bothwell, M. L., D. R. Lynch, H. Wright & J. Deniseger, 2009. On the boots of fishermen: the history of didymo blooms on Vancouver Island. British Columbia. Fisheries 34(8): 382–388.

  9. Bothwell, M. L., C. Kilroy, B. W. Taylor, E. T. Ellison, D. A. James, C.-A. Gillis, K. D. Bladon & U. Silins, 2012. Iron is not responsible for Didymosphenia geminata bloom formation in phosphorus-poor rivers. Canadian Journal of Fisheries and Aquatic Sciences 69(11): 1723–1727.

  10. Bothwell, M. L., B. W. Taylor & C. Kilroy, 2014. The Didymo story: the role of low dissolved phosphorus in the formation of Didymosphenia geminata blooms. Diatom Research 29(3): 229–236.

  11. Bray, J., 2014. The invasion ecology of Didymosphenia geminata. University of Canterbury, Christchurch.

  12. Bray, J., J. S. Harding, C. Kilroy, P. Broady & P. Gerbeaux, 2016. Physicochemical predictors of the invasive diatom Didymosphenia geminata at multiple spatial scales in New Zealand rivers. Aquatic Ecology 50(1): 1–14.

  13. Bray, J., C. Kilroy, P. Gerbeaux & J. S. Harding, 2017a. Ecological eustress? Nutrient supply, bloom stimulation and competition determine dominance of the diatom Didymosphenia geminata. Freshwater Biology 62(8): 1433–1442.

  14. Bray, J., J. O’Brien & J. S. Harding, 2017b. Production of phosphatase and extracellular stalks as adaptations to phosphorus limitation in Didymosphenia geminata (Bacillariophyceae). Hydrobiologia 784(1): 51–63.

  15. Crumpton, W. G., T. M. Isenhart & P. D. Mitchell, 1992. Nitrate and organic N analyses with second-derivative spectroscopy. Limnology and Oceanography 37(4): 907–913.

  16. Cullis, J. D. S., C. Gillis, M. L. Bothwell & C. Kilroy, 2012. A conceptual model for the blooming behavior and persistence of the benthic mat-morming diatom Didymosphenia geminata in oligotrophic streams. Journal of Geophysical Research 117: 1–11.

  17. Cullis, J. D. S., D. M. McKnight & S. A. Spaulding, 2015. Hydrodynamic control of benthic mats of Didymosphenia geminata at the reach scale. Canadian Journal of Fisheries and Aquatic Sciences 72(6): 902–914.

  18. Davies, W. J. & J. Zhang, 1991. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Biology 42(1): 55–76.

  19. Ellwood, N. T. W. & B. A. Whitton, 2007. Importance of organic phosphate hydrolyzed in stalks of the lotic diatom Didymosphenia geminata and the possible impact of atmospheric and climatic changes. Hydrobiologia 592: 121–133.

  20. Entwisle, T., 1989. Phenology of the Cladophora-Stigeoclonium community in two urban creeks of Melbourne. Marine and Freshwater Research 40(5): 471–489.

  21. Exley, C., A. Tollervey, G. Gray, S. Roberts & J. D. Birchall, 1993. Silicon, aluminium and the biological availability of phosphorus in algae. Proceedings of the Royal Society of London Series B: Biological Sciences 253(1336): 93–99.

  22. Flöder, S. & C. Kilroy, 2009. Didymosphenia geminata (Protista, Bacillariophyceae) invasion, resistance of native periphyton communities, and implications for dispersal and management. Biodiversity and Conservation 18(14): 3809–3824.

  23. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35(2): 403–424.

  24. Hix, L. A. & J. N. Murdock, 2018. Didymosphenia geminata habitat requirements are unique and variable for cell establishment and mat accumulation. Hydrobiologia. https://doi.org/10.1007/s10750-018-3809-3.

  25. Hoagland, K. D., J. R. Rosowski, M. R. Gretz & S. C. Roemer, 1993. Diatom extracellular polymeric substances—function, fine structure, chemistry, and physiology. Journal of Phycology 29(5): 537–566.

  26. Holmes, R. M., A. Aminot, R. Kérouel, B. A. Hooker & B. J. Peterson, 1999. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 56(10): 1801–1808.

  27. Hudon, C. & E. Bourget, 1981. Initial colonization of artificial substrate: community development and structure studies by scanning electron microscopy. Canadian Journal of Fisheries and Aquatic Sciences 38: 1371–1384.

  28. Jackson, L. J., L. Corbett & G. Scrimgeour, 2015. Environmental constraints on Didymosphenia geminata occurrence and bloom formation in Canadian Rocky Mountain lotic systems. Canadian Journal of Fisheries and Aquatic Sciences 73(6): 964–972.

  29. James, D., K. Mosel & S. Chipps, 2014. The influence of light, stream gradient, and iron on Didymosphenia geminata bloom development in the Black Hills, South Dakota. Hydrobiologia 721: 117–127.

  30. James, D. A., M. L. Bothwell, S. R. Chipps & J. Carreiro, 2015. Use of phosphorus to reduce blooms of the benthic diatom Didymosphenia geminata in an oligotrophic stream. Freshwater Science 34(4): 1272–1281.

  31. Jellyman, P. G. & J. S. Harding, 2016. Disentangling the stream community impacts of Didymosphenia geminata: How are higher trophic levels affected? Biological Invasions 18(12): 3419–3435.

  32. Kawecka, B. & J. Sanecki, 2003. Didymosphenia geminata in running waters of southern Poland—symptoms of change in water quality? Hydrobiologia 495(1–3): 193–201.

  33. Khan-Bureau, D. A., M. S. Beauchene, L. Ector, E. A. Morales & L. A. Lewis, 2014. Observations of two nuisance stalk-forming diatoms (Bacillariophyta) from a river in Connecticut, Northeastern U.S.A.: Didymosphenia sp. and Cymbella janischii (A. Schmidt) De Toni. BioInvasions Records 3: 139–149.

  34. Kilroy, C. A. & M. L. Bothwell, 2011. Environmental control of stalk length in the bloom-forming, freshwater benthic diatom Didymosphenia geminata (Bacillariophyceae). Journal of Phycology 47(5): 981–989.

  35. Kilroy, C. & M. L. Bothwell, 2012. Didymosphenia geminata growth rates and bloom formation in relation to ambient dissolved phosphorus concentration. Freshwater Biology 57(4): 641–653.

  36. Kilroy, C. & M. L. Bothwell, 2014. Attachment and short-term stalk development of Didymosphenia geminata: effects of light, temperature and nutrients. Diatom Research 29(3): 237–248.

  37. Kilroy, C. & S. T. Larned, 2016. Contrasting effects of low-level phosphorus and nitrogen enrichment on growth of the mat-forming alga Didymosphenia geminata in an oligotrophic river. Freshwater Biology 61(9): 1550–1567.

  38. Kilroy, C. & P. Novis, 2018. Is Didymosphenia geminata an introduced species in New Zealand? Evidence from trends in water chemistry, and chloroplast DNA. Ecology and Evolution 8(2): 904–919.

  39. Kilroy, C. & M. Unwin, 2011. The arrival and spread of the bloom-forming, freshwater diatom, Didymosphenia geminata, in New Zealand. Aquatic Invasions 6(3): 249–262.

  40. Kilroy, C., T. H. Snelder, O. Floerl, C. C. Vieglais & K. L. Dey, 2008. A rapid technique for assessing the suitability of areas for invasive species applied to New Zealand’s Rivers. Diversity and Distributions 14(2): 262–272.

  41. Kilroy, C., S. T. Larned & B. J. F. Biggs, 2009. The non-indigenous diatom Didymosphenia geminata alters benthic communities in New Zealand rivers. Freshwater Biology 54(9): 1990–2002.

  42. Kirkwood, A. E., T. Shea, L. J. Jackson & E. McCauley, 2007. Didymosphenia geminata in two Alberta headwater rivers: an emerging invasive species that challenges conventional views on algal bloom development. Canadian Journal of Fisheries and Aquatic Sciences 64(12): 1703–1709.

  43. Kirkwood, A. E., L. J. Jackson & E. McCauley, 2009. Are dams hotspots for Didymosphenia geminata blooms? Freshwater Biology 54(9): 1856–1863.

  44. Kleiven, O. T., P. Larsson & A. Hobæk, 1992. Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65(2): 197–206.

  45. Kumar, S., S. A. Spaulding, T. J. Stohlgren, K. A. Hermann, T. S. Schmidt & L. L. Bahls, 2009. Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Frontiers in Ecology and the Environment 7(8): 415–420.

  46. Kunza, L. A., C.-A. Gillis, J. Z. Haueter, J. N. Murdock & J. M. O’Brien, 2018. Declining phosphorus as a potential driver for the onset of Didymosphenia geminata mats in North American rivers. River Research and Applications 34(8): 1105–1110.

  47. Ladrera, R., M. Rieradevall & N. Prat, 2015. Massive growth of the invasive algae Didymosphenia geminata associated with discharges from a mountain reservoir alters the taxonomic and functional structure of macroinvertebrate community. River Research and Applications 31(2): 216–227.

  48. Ladrera, R., J. Goma & N. Prat, 2016. Regional distribution and temporal changes in density and biomass of Didymosphenia geminata in two Mediterranean river basins. Aquatic Invasions 11(4): 355–367.

  49. Landry-Cuerrier, M., D. Munro, D. Thomas & M. Humphries, 2008. Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89(12): 3306–3316.

  50. Larned, S. T., A. I. Packman, D. R. Plew & K. Vopel, 2011. Interactions between the mat-forming alga Didymosphenia geminata and its hydrodynamic environment. Limnology & Oceanography: Fluids & Environments 1: 4–22.

  51. Lewis, R. J., L. M. Johnson & K. D. Hoagland, 2002. Effects of cell density, temperature, and light intensity on growth and stalk production in the biofouling diatom Achnanthes longipes (bacillariophyceae). Journal of Phycology 38(6): 1125–1131.

  52. Ma, J., J. D. Brookes, B. Qin, H. W. Paerl, G. Gao, P. Wu, W. Zhang, J. Deng, G. Zhu & Y. Zhang, 2014. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31: 136–142.

  53. Mainstone, C. P. & W. Parr, 2002. Phosphorus in rivers—ecology and management. Science of The Total Environment 282–283: 25–47.

  54. Moede, A., R. W. Greene & D. F. Spencer, 1980. Effects of selenium on the growth and phosphorus uptake of Scenedesmus dimorphus and Anabaena cylindrica. Environmental and Experimental Botany 20(2): 207–212.

  55. Montgomery, K., 2006. Variation in temperature with altitude and latitude. Journal of Geography 105(3): 133–135.

  56. Myklestad, S. M., 1995. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Science of The Total Environment 165(1): 155–164.

  57. Ostrofsky, M. L. & F. H. Rigler, 1987. Chlorophyll-phosphorus relationships for subarctic lakes in western Canada. Canadian Journal of Fisheries and Aquatic Sciences 44: 775–781.

  58. Peters, R. H., 1986. The Ecological Implications of Body Size, Vol. 2. Cambridge University Press, New York.

  59. R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

  60. Reid, B. L., K. L. Hernandez, M. Frangopulos, G. Bauer, M. Lorca, C. Kilroy & S. Spaulding, 2012. The invasion of the freshwater diatom Didymosphenia geminata in Patagonia: prospects, strategies, and implications for biosecurity of invasive microorganisms in continental waters. Conservation Letters 5(6): 432–440.

  61. Reinfelder, J. R., 2012. Carbon dioxide regulation of nitrogen and phosphorus in four species of marine phytoplankton. Marine Ecology Progress Series 466: 57–67.

  62. Richardson, D. C., I. A. Oleksy, T. J. Hoellein, D. B. Arscott, C. A. Gibson & S. M. Root, 2014. Habitat characteristics, temporal variability, and macroinvertebrate communities associated with a mat-forming nuisance diatom (Didymosphenia geminata) in Catskill mountain streams, New York. Aquatic Sciences 76(4): 553–564.

  63. Rodriguez Castro, M. C., G. Urrea & H. Guasch, 2015. Influence of the interaction between phosphate and arsenate on periphyton’s growth and its nutrient uptake capacity. Science of The Total Environment 503–504: 122–132.

  64. SAS Institute Inc., 2018. JMP Pro. 14.3 edn. SAS Institute, Inc., Cary, North Carolina.

  65. Smayda, T. J., 1997. What is a bloom? A commentary. Limnology and Oceanography 42(5): 1132–1136.

  66. Smith, V. H., 2003. Eutrophication of freshwater and coastal marine ecosystems—a global problem. Environmental Science and Pollution Research 10(2): 126–139.

  67. Staats, N., L. J. Stal & L. R. Mur, 2000. Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. Journal of Experimental Marine Biology and Ecology 249(1): 13–27.

  68. Sundareshwar, P. V., S. Upadhayay, M. Abessa, S. Honomichl, B. Berdanier, S. A. Spaulding, C. Sandvik & A. Trennepohl, 2011. Didymosphenia geminata: algal blooms in oligotrophic streams and rivers. Geophysical Research Letters. https://doi.org/10.1029/2010gl046599.

  69. Sutherland, T. F., J. Grant & C. L. Amos, 1998. The effect of carbohydrate production by the diatom Nitzschia curvilineata on the erodibility of sediment. Limnology and Oceanography 43(1): 65.

  70. Taylor, B. W. & M. L. Bothwell, 2014. The origin of invasive microorganisms matters for science, policy, and management: The case of Didymosphenia geminata. Bioscience 64(6): 531–537.

  71. Taylor, B. W., C. F. Keep, R. O. Hall Jr., B. J. Koch, L. M. Tronstad, A. S. Flecker & A. J. Ulseth, 2007. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. Journal of the North American Benthological Society 26(2): 167–177.

  72. Underwood, G. J. C. & D. M. Paterson, 2003. The importance of extracellular carbohydrate productionby marine epipelic diatoms. Advances in Botanical Research 40: 183–240.

  73. Veldhuis, M. & W. Admiraal, 1987. Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Marine Biology 95(1): 47–54.

  74. Whitton, B. A., N. T. W. Ellwood & B. Kawecka, 2009. Biology of the freshwater diatom Didymosphenia: a review. Hydrobiologia 630(1): 1–37.

Download references

Acknowledgements

We thank E. Binck and J. Fitzgerald for field and laboratory assistance. We are grateful to M. Bothwell for productive discussions and advice. Funding was provided by the University of Texas at Dallas McDermott Scholars program to M. Owens and North Carolina State University and NSF IOS 1641041 to B. Taylor.

Author information

Correspondence to Brad W. Taylor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: David Philip Hamilton

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1829 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

West, D.C., Balik, J.A., Owens, M. et al. Didymosphenia geminata blooms are not exclusively driven by low phosphorus under experimental conditions. Hydrobiologia 847, 1057–1069 (2020). https://doi.org/10.1007/s10750-019-04168-y

Download citation

Keywords

  • Phosphate
  • Algae
  • Diatoms
  • Regrowth
  • Stalks