Advertisement

Hydrobiologia

, Volume 847, Issue 4, pp 1013–1025 | Cite as

Feeding ecology and niche segregation of the spider crab Libinia ferreirae (Decapoda, Brachyura, Majoidea), a symbiont of Lychnorhiza lucerna (Cnidaria, Scyphozoa, Rhizostomeae)

  • Geslaine Rafaela Lemos Gonçalves
  • Maria Lucia Negreiros-Fransozo
  • Adilson Fransozo
  • Antonio Leão CastilhoEmail author
Primary Research Paper
  • 60 Downloads

Abstract

Feeding strategies provide essential information to help understand symbiotic relationships and resource competition as well as environmental integrity. This study examined the feeding ecology of the spider crab Libinia ferreirae, which is commonly associated with the jellyfish Lychnorhiza lucerna during part of its life cycle, especially the juvenile stage. In the adult phase, the crab is a host for many epibionts that live on its carapace. The crabs were collected in 1 year, and the stomach contents were analyzed by the percentage points and the frequency of occurrence of the food items. We identified ten food items (food in the advanced stage of digestion was unidentifiable) and microplastic particles in the gastric contents of the crabs. The food items with high abundances were sediment, crustaceans, and cnidarians. We found niche partitioning of the spider crab’s diet during the benthic (free-living) and planktonic (L. lucerna association) phases. The fact that microplastic is part of the diet of L. ferreirae is concerning and shows how environmental contamination with plastic material has been incorporated into the marine food chain as a whole.

Keywords

Frequency of occurrence Percentage points Association Microplastic Host 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - CIMAR II 23038.004310/2014-85; the Fundação de Amparo à Pesquisa do Estado de São Paulo (Biota/FAPESP) - 2010/50188-8, 2014/13770-1, 2018/01659-0; and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Research Scholarships PQ) - 303371/2011-0, 311034/2018-7. We thank colleagues from the “Núcleo de Estudos em Biologia, Ecologia e Cultivo de Crustáceos” (NEBECC group) and Dr. Eduardo Antonio Bolla Jr. for helping in the techniques of statistical analysis. We appreciate permission by “Instituto Chico Mendes de Conservação da Biodiversidade” (ICMBio) to collect the medusae and crabs.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andrés, M., A. Estévez, K. Anger & G. Rotllant, 2008. Developmental patterns of larval growth in the edible spider crab, Maja brachydactyla (Decapoda: Majidae). Journal of Experimental Marine Biology and Ecology 357(1): 35–40.Google Scholar
  2. Barros, S., V. J. Cobo & A. Fransozo, 2008. Feeding habits of the spider crab Libinia spinosa H. Milne Edwards, 1834 (Decapoda, Brachyura) in Ubatuba Bay, São Paulo, Brazil. Brazilian Archives of Biology and Technology 51(2): 413–417.Google Scholar
  3. Bolla Jr., E. A. & M. L. Negreiros-Fransozo, 2016. Morphology of juvenile phase of Achelous spinimanus (Latreille, 1819) (Crustacea, Decapoda, Portunidae) reared in laboratory. Journal of the Marine Biological Association of the United Kingdom 03: 615–631.Google Scholar
  4. Branco, J. O. & J. R. Verani, 1997. Dinâmica da alimentação natural de Callinectes danae Smith (Decapoda) na Lagoa da Conceição Florianópolis, Santa Catarina, Brasil. Revista Brasileira de Zoologia 14: 1003–1018.Google Scholar
  5. Browne, M. A., A. J. Underwood, M. G. Chapman, R. Williams, R. C. Thompson & J. A. van Franeker, 2015. Linking effects of anthropogenic debris to ecological impacts. Proceedings of the Royal Society B: Biological Sciences 282: 2014–2929.Google Scholar
  6. Brusca, R. & G. Brusca, 2007. Invertebrados, 2nd ed. Guanabara Koogan S.A, Rio de Janeiro.Google Scholar
  7. Cole, M., P. Lindeque, E. Fileman, C. Halsband, R. Goodhead, J. Moger & T. S. Galloway, 2013. Microplastic ingestion by zooplankton. Environmental Science & Technology 47(12): 6646–6655.Google Scholar
  8. Devriese, L., M. van der Meulen, T. Maes, K. Bekaert, I. Paul-Pont, L. Frére, J. Robbens & A. Vethaak, 2015. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Marine Pollution Bulletin 98: 179–187.PubMedGoogle Scholar
  9. Diegues, A. C., 1987. Conservação e desenvolvimento sustentado de ecossistemas litorâneos no Brasil. Secretaria do Meio Ambiente, São Paulo.Google Scholar
  10. Ennis, G. P., 1973. Food, feeding, and condition of lobsters, Homarus americanus, throughout the seasonal cycle in Bonavista Bay, Newfoundland. Journal of the Fisheries Research Board of Canada 30: 1905–1909.Google Scholar
  11. Fonteles-Filho, A. A., 2011. Oceanografia, biologia e dinâmica populacional de recursos pesqueiros. Expressão Gráfica, Fortaleza.Google Scholar
  12. Foucreau, N., D. Cottin, C. Piscart & F. Hervant, 2014. Physiological and metabolic responses to rising temperature in Gammarus pulex (Crustacea) populations living under continental or Mediterranean climates. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 168: 69–75.Google Scholar
  13. Gonçalves, G. R. L., M. R. Wolf, R. C. Costa & A. L. Castilho, 2016. Decapod crustacean associations with scyphozoan jellyfish (Rhizostomeae: Pelagiidae) in the Southeastern Brazilian coast. Symbiosis 69: 193–198.Google Scholar
  14. Gonçalves, G. R. L., R. C. Grabowski, G. L. Bochini, R. C. Costa & A. L. Castilho, 2017a. Ecology of the spider crab Libinia ferreirae (Brachyura: Majoidea): ontogenetic shifts in habitat use. Hydrobiologia 795: 313–325.Google Scholar
  15. Gonçalves, G. R. L., E. A. Bolla Jr., M. L. Negreiros-Fransozo & A. L. Castilho, 2017b. Morphometric and gonadal maturity of the spider crab Libinia ferreirae Brito Capello, 1871 (Decapoda: Majoidea: Epialtidae) at Southeastern Brazilian coast. Journal of the Marine Biological Association of the United Kingdom 97(2): 289–295.Google Scholar
  16. González- Carman, V., F. Botto, E. Gaitán, D. Albareda, C. Campagna & H. Mianzan, 2014. A jellyfish diet for the herbivorous green turtle Chelonia mydas in the temperate SW Atlantic. Marine Biology 161: 339–349.Google Scholar
  17. Gregory, M. R., 2009. Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526): 2013–2025.Google Scholar
  18. Guerao, G. & G. Rotllant, 2009. Survival and growth of post-settlement juveniles of the spider crab Maja brachydactyla (Brachyura: Majoidea) reared under individual culture system. Aquaculture 289(1): 181–184.Google Scholar
  19. Guinot, D. & J. M. Bouchard, 1998. Evolution of the abdominal holding systems of brachyuran crabs (Crustacea, Decapoda, Brachyura). Zoosystema 20: 613–694.Google Scholar
  20. Haefner Jr., P. A., 1990a. Natural diet of Callinectes ornatus (Brachyura: Portunidae) in Bermuda. Journal of Crustacean Biology 10(2): 236–246.Google Scholar
  21. Haefner Jr., P. A., 1990b. Morphometry and size at maturity of Callinectes ornatus (Brachyura, Portunidae) in Bermuda. Bulletin of Marine Science 46(2): 274–286.Google Scholar
  22. Hartnoll, R. G., 1982. Growth. In Bliss, D. E. (ed.), The Biology of Crustacea: Embryology, Morphology and Genetics. Academic Press, New York: 111–196.Google Scholar
  23. Hidalgo-Ruz, V., L. Gutow, R. Thompson & M. Thiel, 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology 46: 3060–3075.Google Scholar
  24. Hultgren, K. & J. Stachowicz, 2011. Camouflage in decorator crabs. In Stevens, M. & S. Merilaita (eds), Animal Camouflage: Mechanisms and Function. Cambridge University Press, Cambridge: 214–238.Google Scholar
  25. Hyslop, E. J., 1980. Stomach contents analysis — a review of methods and their application. Journal of Fish Biology 17(4): 411–429.Google Scholar
  26. Ingram, B. A., K. A. Pitt & P. Barnes, 2017. Stable isotopes reveal a potential kleptoparasitic relationship between an ophiuroid (Ophiocnemis marmorata) and the semaeostome jellyfish, Aurelia aurita. Journal of Plankton Research 39(1): 138–146.Google Scholar
  27. Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan & K. L. Law, 2015. Plastic waste inputs from land into the ocean. Science 347(6223): 768–771.PubMedGoogle Scholar
  28. Lönnstedt, O. M. & P. Eklöv, 2016. Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352(6290): 1213–1216.PubMedGoogle Scholar
  29. Lusher, A. L., G. Hernandez-Milian, J. O’Brien, S. Berrow, I. O’Connor & R. Officer, 2015. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the True’s beaked whale Mesoplodon mirus. Environmental Pollution 199: 185–191.PubMedGoogle Scholar
  30. Mantelatto, F. L. M. & R. A. Christofoletti, 2001. Natural feeding activity of the crab Callinectes ornatus (Portunidae) in Ubatuba Bay (São Paulo, Brazil): influence of season, sex, size and molt stage. Marine Biology 138(3): 585–594.Google Scholar
  31. Mariscal, R., 1974. Nematocysts. In Musatine, L. & H. Lenhoff (eds), Coelenterate Biology: Reviews and New Perspectives. Academic Press, New York: 129–178.Google Scholar
  32. Masuda, R., Y. Yamashita & M. Matsuyama, 2008. Jack mackerel Trachurus japonicus juveniles use jellyfish for predator avoidance and as a prey collector. Fisheries Science 74(2): 276–284.Google Scholar
  33. McLaughlin, P. A. & J. F. Herbard, 1961. Stomach contents of the Bering Sea king crab. Bulletin of the International North Pacific Fish Commission 5: 5–8.Google Scholar
  34. Melo, G. A. S., 1996. Manual de identificação dos Brachyura (caranguejos e siris) do litoral brasileiro. FAPESP, São Paulo.Google Scholar
  35. Mendonça, J. T., J. R. Verani & N. Nordi, 2010. Evaluation and management of blue crab Callinectes sapidus (Rathbun, 1896) (Decapoda - Portunidae) fishery in the Estuary of Cananéia, Iguape and Ilha Comprida, São Paulo, Brazil. Brazilian Journal of Biology 70: 37–45.Google Scholar
  36. Moore, C. J., 2008. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental Research 108(2): 131–139.PubMedGoogle Scholar
  37. Murray, F. & P. R. Cowie, 2011. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin 62(6): 1207–1217.PubMedGoogle Scholar
  38. Nagata, R. M., M. Z. Moreira, C. R. Pimentel & A. C. Morandini, 2015. Food web characterization based on δ15 N and δ13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Marine Ecology Progress Series 519: 13–27.Google Scholar
  39. Nagata, R. M., A. C. Morandini, S. P. Colin, A. E. Migotto & J. H. Costello, 2016. Transitions in morphologies, fluid regimes, and feeding mechanisms during development of the medusa Lychnorhiza lucerna. Marine Ecology Progress Series 557: 145–159.Google Scholar
  40. Ohtsuka, S., K. Koike, D. Lindsay, J. Nishikawa, H. Miyake, M. Kawahara, H. Mulyadi, N. Mujiono, J. Hiromi & H. Komatsu, 2009. Symbionts of marine medusae and ctenophores. Plankton Benthos Research 4: 1–13.Google Scholar
  41. Paul, R. K. G., 1981. Natural diet, feeding and predatory activity of the crabs Callinectes arcuatus and C. toxotes (Decapoda, Brachyura, Portunidae). Marine Ecology Progress Series 6: 91–99.Google Scholar
  42. Port, D., J. A. Alvarez Perez & J. T. de Menezes, 2016. The evolution of the industrial trawl fishery footprint off southeastern and southern Brazil. Latin American Journal of Aquatic Research 44(5): 908–925.Google Scholar
  43. Queirolo, D., R. Wahrlich, R. Molina, J. Munari-Faccin & P. R. Pezzuto, 2016. Industrial double rig trawl fisheries in the southeastern and southern Brazil: characterization of the fleet, nets and trawl simulation. Latin American Journal of Aquatic Research 44(5): 898–907.Google Scholar
  44. Reigada, A. L. D. & M. L. Negreiros-Fransozo, 2001. Feeding activity of Callinectes ornatus Ordway, 1863 and Callinectes danae Smith, 1869 (Crustacea, Brachyura, Portunidae) in Ubatuba, SP, Brazil. Hydrobiologia 449: 249–252.Google Scholar
  45. Rochman, C. M., E. Hoh, B. T. Hentschel & S. Kaye, 2013a. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environmental Science & Technology 47(3): 1646–1654.Google Scholar
  46. Rochman, C. M., M. A. Browne, B. S. Halpern, B. T. Hentschel, E. Hoh, H. K. Karapanagioti, L. M. Rios-Mendoza, H. Takada, S. The & R. C. Thompson, 2013b. Policy: classify plastic waste as hazardous. Nature 494(7436): 169–171.PubMedGoogle Scholar
  47. Ruppert, E. E., R. S. Fox & R. D. Barnes, 2005. Zoologia dos Invertebrados, 7th ed. Roca, São Paulo.Google Scholar
  48. Sal Moyano, M. P., A. Schiariti, D. A. Gilberto, L. Diaz Briz, M. A. Gavio & H. W. Miazan, 2012. The symbiotic relationship between Lychnorhiza lucerna (Scyphozoa, Rhizostomeae) and Libinia spinosa (Decapoda, Epialtidae) in the Río de la Plata (Argentina-Uruguay). Marine Biology 159: 1933–1941.Google Scholar
  49. Siikavuopio, S. I. & P. James, 2015. Effects of temperature on feed intake, growth and oxygen consumption in adult male king crab Paralithodes camtschaticus held in captivity and fed manufactured diets. Aquaculture Research 46(3): 602–608.Google Scholar
  50. Stevens, B. G., D. A. Armstrong & R. Cusimano, 1982. Feeding habits of the Dungeness crab Cancer magister as determined by the Index of Relative Importance. Marine Biology 72: 135–145.Google Scholar
  51. Tavares, M. & W. Santana, 2012. On the morphological differentiation between Libinia spinosa and L. ferreirae (Crustacea: Brachyura: Majoidea: Epialtidae). Zoologia 29(6): 577–588.Google Scholar
  52. Thompson, R. C., 2006. Plastic debris in the marine environment: consequences and solutions. In Krause, J. C., H. Nordheim & S. Bräger (eds), Marine Nature Conservation in Europe. Federal Agency for Nature Conservation, Stralsund: 107–115.Google Scholar
  53. Tuthill, J., 2016. How crabs enjoy a hot meal. PLoS Biology 13: e1002265.Google Scholar
  54. Ugolini, A., G. Ungherese, M. Ciofini, A. Lapucci & M. Camaiti, 2013. Microplastic debris in sand hoppers. Estuarine, Coastal and Shelf Science 129: 19–22.Google Scholar
  55. Watts, A. J. R., C. Lewis, R. M. Goodhead, S. J. Beckett, J. Moger, C. R. Tyler & T. S. Galloway, 2014. Uptake and retention of microplastics by the shore crab Carcinus maenas. Environmental Science & Technology 48(15): 8823–8830.Google Scholar
  56. Watts, A. J., M. A. Urbina, S. Corr, C. Lewis & T. S. Galloway, 2015. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environmental Science & Technology 49(24): 14597–14604.Google Scholar
  57. Welden, N. & P. Cowie, 2016. Environment and gut morphology influence microplastic retention in langoustine, Nephrops norvegicus. Environmental Pollution 214: 859–865.PubMedGoogle Scholar
  58. Williams, M. J., 1981. Methods for analysis of natural diet in portunid crabs (Crustacea: Decapoda: Portunidae). Journal of Experimental Marine Biology 52(1): 103–113.Google Scholar
  59. Winter, V. C. & S. Masunari, 2006. Macroepizoismo em Libinia ferreirae (Crustacea, Brachyura, Majidae). Iheringia, Série Zoologia 96(2): 135–140.Google Scholar
  60. Wójcik-Fudalewska, D., M. Normant-Saremba & P. Anastácio, 2016. Occurrence of plastic debris in the stomach of the invasive crab Eriocheir sinensis. Marine Pollution Bulletin 113(1): 306–311.PubMedGoogle Scholar
  61. Wright, S. L., R. C. Thompson & T. S. Galloway, 2013. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution 178: 483–492.PubMedGoogle Scholar
  62. Zar, J. H., 1999. Biostatistical Analysis. Pratice-Hall, Upper Saddle River.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Group of Studies on Crustacean Biology, Ecology and Cultivation (NEBECC), Zoology Department, Institute of Bioscience of BotucatuSão Paulo State UniversitySão PauloBrazil

Personalised recommendations