Advertisement

A native species does not prevent the colonization success of an introduced submerged macrophyte, even at low propagule pressure

  • Nayara Louback-FrancoEmail author
  • Mário S. Dainez-Filho
  • Douglas C. Souza
  • Sidinei M. Thomaz
TRENDS IN AQUATIC ECOLOGY III

Abstract

Invasions are a threat to biodiversity because non-native species are generally more competitive than native species. Hydrilla verticillata is an invasive macrophyte that causes concern in many regions. We used field surveys and an experiment to test the hypothesis that H. verticillata colonization is negatively affected by a native competitor and positively affected by propagule pressure. We used data obtained in the field (a reservoir) to test whether H. verticillata was able to invade sites colonized by the native submerged macrophyte Helanthium tenellum. Then, we developed an outdoor experiment using H. tenellum as a competitor at different levels of H. verticillata propagule pressure. The field surveys indicated that H. verticillata invaded sites colonized by H. tenellum. Furthermore, our experiments showed that propagule pressure was effective in increasing H. verticillata colonization, while the presence of the native species was not enough to prevent early H. verticillata colonization, even at the lowest propagule pressure. We conclude that submerged macrophytes with creeping life forms, such as H. tenellum, do not provide biotic resistance to H. verticillata colonization independent of propagule pressure. These results are of concern because there are many important aquatic environments in Brazil that are colonized by creeping life forms macrophytes.

Keywords

Invasive species Invasion biology Non-native species Exotic species Alien species Establishment Aquatic plants 

Notes

Acknowledgements

We thank Eduardo Ribeiro Cunha, Thaisa Sala Michelan, Marcio José Silveira and Emanuel Cafofo for fruitful discussions during the elaboration of this work and for field assistance. We acknowledge with appreciation the comments provided by two reviewers, who contributed to improve the first version of this work. We thank the Brazilian Council of Research (CNPq) for providing MSc scholarships for NLF and MSD and a research productivity grant to SMT. CAPES, a program of the Brazilian government for the training of human resources, provided an MSc scholarship to DCS and funds to support the field samplings and the experiment.

Supplementary material

10750_2019_4116_MOESM1_ESM.docx (906 kb)
Supplementary material 1 (DOCX 905 kb)

References

  1. Aliff, M. N., E. D. Reavie, M. C. TenEyck, D. K. Branstrator, T. Schwerdt, A. A. Cangelosi & M. Cai, 2018. Evaluation of a method for ballast water risk-release assessment using a protist surrogate. Hydrobiologia 817: 11–22.CrossRefGoogle Scholar
  2. Baniszewski, J., J. P. Cuda, S. A. Gezan, S. Sharma & E. N. I. Weeks, 2016. Stem fragment regrowth of Hydrilla verticillata following desiccation. J Aquat Plant Manag 54: 53–60.Google Scholar
  3. Beyruth, Z., 1992. Macrófitas aquáticas de um lago marginal ao rio Embu-mirim, São Paulo, Brasil. Rev Saude Publica 26: 272–282.PubMedCrossRefGoogle Scholar
  4. Bianchini, I., M. B. Cunha-Santino, J. A. M. Milan, C. J. Rodrigues & J. H. P. Dias, 2010. Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions. Hydrobiologia 644: 301–312.CrossRefGoogle Scholar
  5. Blackburn, T. M., J. L. Lockwood & P. Cassey, 2015. The influence of numbers on invasion success. Mol Ecol 24: 1942–1953.PubMedCrossRefGoogle Scholar
  6. Borgnis, E. & K. E. Boyer, 2016. Salinity tolerance and competition drive distributions of native and invasive submerged aquatic vegetation in the Upper San Francisco Estuary. Estuar Coasts 39: 707–717.CrossRefGoogle Scholar
  7. Broadbent, A., C. J. Stevens, D. A. Peltzer, N. J. Ostle & K. H. Orwin, 2018. Belowground competition drives invasive plant impact on native species regardless of nitrogen availability. Oecologia 186: 577–587.PubMedCrossRefGoogle Scholar
  8. Byun, C., S. de Blois & J. Brisson, 2014. Interactions between abiotic constraint, propagule pressure, and biotic resistance regulate plant invasion. Oecologia 178(1): 285–296.PubMedCrossRefGoogle Scholar
  9. Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15: 22–40.CrossRefGoogle Scholar
  10. Chadwell, T. B. & K. A. M. Engelhardt, 2008. Effects of pre-existing submersed vegetation and propagule pressure on the invasion success of Hydrilla verticillata. J Appl Ecol 45: 515–523.CrossRefGoogle Scholar
  11. Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biol Invasions 8: 1023–1037.CrossRefGoogle Scholar
  12. Cook, C. D. K. & R. Lüönd, 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquat Bot 13: 485–504.CrossRefGoogle Scholar
  13. Cuassolo, F., M. B. Navarro, E. Balseiro & B. Modenutti, 2016. Effect of light on particulate and dissolved organic matter production of native and exotic macrophyte species in Patagonia. Hydrobiologia 766: 29–42.CrossRefGoogle Scholar
  14. Duncan, 2011. Propagule pressure encyclopedia of biological invasions. University of California Press, Berkeley: 561–563.Google Scholar
  15. Efremov, A., Y. Bolotova, A. Mesterházy & C. Toma, 2018. Features of distribution of Hydrilla verticillata (L. fil.) Royle (Hydrocharitaceae) in North Eurasia. J Coast Res 34: 675.CrossRefGoogle Scholar
  16. Ellawala Kankanamge, C. & H. Kodithuwakku, 2017. Effect of interspecific competition on the growth and nutrient uptake of three macrophytes in nutrient-rich water. Aquat Ecol 51: 625–634.CrossRefGoogle Scholar
  17. Elton, C., 1958. The ecology of invasions by animals and plants. University of Chicago Press, Chicago.CrossRefGoogle Scholar
  18. Felisberto, S. A. & L. Rodrigues, 2010. Cosmarium (Desmidiaceae, Zygnemaphyceae) da ficoflórula perifítica do reservatório de Rosana, bacia do rio Paranapanema, Paraná/São Paulo, Brasil. Hoehnea 37: 267–292.CrossRefGoogle Scholar
  19. Ferrareze, M., L. Casatti & M. G. Nogueira, 2014. Spatial heterogeneity affecting fish fauna in cascade reservoirs of the Upper Paraná Basin, Brazil. Hydrobiologia 738: 97.CrossRefGoogle Scholar
  20. Fleming, J. P. & E. D. Dibble, 2014. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746: 23–37.CrossRefGoogle Scholar
  21. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman & A. B. Von Holle, 2007. Concepts & synthesis emphasizing new ideas to stimulate research in ecology the invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.PubMedCrossRefGoogle Scholar
  22. Gopal, B. & U. Goel, 1993. Competition and allelopathy in aquatic plant communities. Bot Rev 59: 155–210.CrossRefGoogle Scholar
  23. Gu, B. & M. V. Hoyer, 2005. Community structure and environmental conditions in Florida shallow lakes dominated by submerged aquatic vegetation. Lake Reserv Manag 21: 403–410.CrossRefGoogle Scholar
  24. Gurevitch, J., G. A. Fox, G. M. Wardle, Inderjit & D. Taub, 2011. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14: 407–418.PubMedCrossRefGoogle Scholar
  25. Hofstra, D., P. Champion & J. Clayton, 2010. Predicting invasive success of Hydrilla verticillata (L.f.) Royle in flowing water. Hydrobiologia 656: 213–219.CrossRefGoogle Scholar
  26. Hofstra, D. E., J. Clayton, J. D. Green & K. D. Adam, 2000. RAPD profiling and isozyme analysis of New Zealand Hydrilla verticillata. Aquat Bot 66: 153–166.CrossRefGoogle Scholar
  27. Keane, R. M. & M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164–170.CrossRefGoogle Scholar
  28. Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3: 157–164.CrossRefGoogle Scholar
  29. Langeland, K. A., 1996. Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), “the perfect aquatic weed”. Castanea 61: 293–304.Google Scholar
  30. Leung, B., J. M. Drake & D. M. Lodge, 2004. Predicting invasions: propagule pressure and the gravity of allee effects. Ecology 85: 1651–1660.CrossRefGoogle Scholar
  31. Levine, J. M., P. B. Adler & S. G. Yelenik, 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7: 975–989.CrossRefGoogle Scholar
  32. Levine, J. M. & C. M. D. Antonio, 1999. Elton revisited: a review of evidence linking diversity and invasibility. OIKOS 87: 15–26.CrossRefGoogle Scholar
  33. Li, H. L., Y. Y. Wang, Q. Zhang, P. Wang, M. X. Zhang & F. H. Yu, 2015. Vegetative propagule pressure and water depth affect biomass and evenness of submerged macrophyte communities. PLoS ONE 10: 1–12.Google Scholar
  34. Lockwood, J. L., F. H. Martha, & M. P. Marchetti, 2010. Invasion EcologyGoogle Scholar
  35. Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20: 223–228.PubMedCrossRefGoogle Scholar
  36. Lozano, V. & G. Brundu, 2018. Prioritisation of aquatic invasive alien plants in South America with the US Aquatic Weed Risk Assessment. Hydrobiologia 812: 115–130.CrossRefGoogle Scholar
  37. Lycarião, T. A. & Ê. W. Dantas, 2017. Interactions between different biological forms of aquatic macrophytes in a eutrophic tropical reservoir in Northeastern Brazil. Rev Biol Trop 65: 1095.CrossRefGoogle Scholar
  38. Matias, L. Q., 2007. O gênero Echinodorus (Alismataceae) no domínio da caatinga brasileira. Rodriguésia 59: 209–258.Google Scholar
  39. Matias, L. Q., E. R. Amado & E. P. Nunes, 2003. Macrófitas aquáticas da lagoa de Jijoca de Jericoacoara, Ceará, Brasil. Acta Bot Bras 17: 623–631.CrossRefGoogle Scholar
  40. Mony, C., T. J. Koschnick, W. T. Haller & S. Muller, 2007. Competition between two invasive Hydrocharitaceae (Hydrilla verticillata (L.f.) (Royle) and Egeria densa (Planch)) as influenced by sediment fertility and season. Aquat Bot 86: 236–242.CrossRefGoogle Scholar
  41. Murphy, K. J., 2002. Plant communities and plant diversity in softwater of northern lakes. Aquat Bot 73: 287–324.CrossRefGoogle Scholar
  42. Nogueira, M. G., A. Jorcin, N. C. Vianna & Y. C. T. Britto, 2006. Reservatórios em Cascata e os Efeitos na Limnologia e Organização das Comunidades Bióticas (Fitoplâncton, Zooplâncton e Zoobentos)—Um Estudo de Caso no Rio Paranapanema (SP/PR). Ecol Reserv 2: 83–126.Google Scholar
  43. Ortega, J. C. G., A. A. Agostinho, N. C. L. Santos, K. D. G. L. Agostinho, F. H. Oda, W. Severi & L. M. Bini, 2018. Similarities in correlates of native and introduced fish species richness distribution in Brazilian reservoirs. Hydrobiologia 817: 167–177.CrossRefGoogle Scholar
  44. Owens, C. S., R. M. Smart & G. O. Dick, 2008. Resistance of Vallisneria to Invasion from Hydrilla Fragments. J Aquat Plant Manag 46: 113–116.Google Scholar
  45. Peres, C. K., R. W. Lambrecht, D. A. Tavares & W. A. Chiba, 2018. Alien Express: the threat of aquarium e-commerce introducing invasive aquatic plants in Brazil. Perspect Ecol Conserv 16: 221–227.Google Scholar
  46. Prior, K. M., T. H. Q. Powell, A. L. Joseph & J. J. Hellmann, 2015. Insights from community ecology into the role of enemy release in causing invasion success: the importance of native enemy effects. Biol Invasions 17: 1283–1297.CrossRefGoogle Scholar
  47. Pyšek, P. & D. M. Richardson, 2010. Invasive species, environmental change and management, and health. Annu Rev Environ Resour 2010(35): 25–55.CrossRefGoogle Scholar
  48. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  49. Rahel, F. J., 2002. Homogenization of freshwater faunas. Annu Rev Ecol Syst 33: 291–315.CrossRefGoogle Scholar
  50. Ribas, L. G. S., E. R. Cunha, J. R. S. Vitule, R. P. Mormul, S. M. Thomaz & A. A. Padial, 2017. Biotic resistance by snails and fish to an exotic invasive aquatic plant. Freshw Biol 62: 1266–1275.CrossRefGoogle Scholar
  51. Ribaudo, C., V. Bertrin, G. Jan, P. Anschutz & G. Abril, 2017. Benthic production, respiration and methane oxidation in Lobelia dortmanna lawns. Hydrobiologia 784: 21–34.CrossRefGoogle Scholar
  52. Roelofs, J. G. M., J. A. A. R. Schuurkes & A. J. M. Smits, 1984. Impact of acidification and eutrophication on macrophyte communities in soft waters. II. Experimental studies. Aquat Bot 18: 389–411.CrossRefGoogle Scholar
  53. Silveira, M. J. & S. M. Thomaz, 2015. Growth of a native versus an invasive submerged aquatic macrophyte differs in relation to mud and organic matter concentrations in sediment. Aquat Bot 124: 85–91.CrossRefGoogle Scholar
  54. Simberloff, D. & M. Rejmanek, 2011. Encyclopedia of biological invasions. University of California Press, Berkeley.Google Scholar
  55. Smolders, A. J. P., E. C. H. E. T. Lucassen & J. G. M. Roelofs, 2002. The isoetid environment: biogeochemistry and threats. Aquat Bot 73: 325–350.CrossRefGoogle Scholar
  56. Sousa, W. T. Z., 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669: 1–20.CrossRefGoogle Scholar
  57. Souza, D. C., E. R. Cunha, R. A. Murillo, M. J. Silveira, M. M. Pulzatto, M. S. Dainez-Filho, L. A. Lolis & S. M. Thomaz, 2017. Species inventory of aquatic macrophytes in the last undammed stretch of the Upper Paraná River, Brazil Inventário de espécies de macrófitas aquáticas no último trecho sem barragens do Alto Rio Paraná, Brasil. Acta Limnol Bras 29: e115.CrossRefGoogle Scholar
  58. Spierenburg, P., E. C. H. E. T. Lucassen, A. F. Lotter & J. G. M. Roelofs, 2009. Could rising aquatic carbon dioxide concentrations favour the invasion of elodeids in isoetid-dominated softwater lakes? Freshw Biol 54: 1819–1831.CrossRefGoogle Scholar
  59. Spierenburg, P., E. Lucassen, A. F. Lotter & J. G. M. Roelofs, 2010. Competition between isoetids and invading elodeids at different concentrations of aquatic carbon dioxide. Freshw Biol 55: 1274–1287.CrossRefGoogle Scholar
  60. Statsoft, Inc (2007) Statistica (data analisys software system), version 7.  < statsoft.com>Google Scholar
  61. Szmeja, J., 1994. Dynamics of the abundance and spatial organisation of isoetid populations in an oligotrophic lake. Aquat Bot 49: 19–32.CrossRefGoogle Scholar
  62. Thouvenot, L., C. Puech, L. Martinez, J. Haury & G. Thiébaut, 2013. Strategies of the invasive macrophyte Ludwigia grandiflora in its introduced range: competition, facilitation or coexistence with native and exotic species? Aquat Bot 107: 8–16.CrossRefGoogle Scholar
  63. Thouvenot, L. & G. Thiebaut, 2018. Regeneration and colonization abilities of the invasive species Elodea canadensis and Elodea nuttallii under a salt gradient: implications for freshwater invasibility. Hydrobiologia 817: 193–203.CrossRefGoogle Scholar
  64. Umetsu, C. A., H. B. A. Evangelista & S. M. Thomaz, 2012. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquat Ecol 46: 443–449.CrossRefGoogle Scholar
  65. Van, T. K., G. S. Wheeler & T. D. Center, 1999. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquat Bot 62: 225–233.CrossRefGoogle Scholar
  66. Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’ s ecosystems. Science 277: 494–499.CrossRefGoogle Scholar
  67. Wang, J. W., D. Yu, W. Xiong & Y. Q. Han, 2008. Above- and belowground competition between two submersed macrophytes. Hydrobiologia 607: 113–122.CrossRefGoogle Scholar
  68. Xie, D., Y. Hu, R. P. Mormul, R. Honghua, F. Yuqing & M. Zhang, 2018. Fragment type and water nutrient interact and affectthe survival and establishment of Myriophyllum aquaticum. Hydrobiologia 817: 205–213.CrossRefGoogle Scholar
  69. Xie, D., D. Yu, W. H. You & C. X. Xia, 2013. The propagule supply, litter layers and canopy shade in the littoral community influence the establishment and growth of Myriophyllum aquaticum. Biol Invasions 15: 113–123.CrossRefGoogle Scholar
  70. Xu, X., L. Yang, X. L. Huang, Z. Q. Li & D. Yu, 2018. Water brownification may not promote invasions of submerged non-native macrophytes. Hydrobiologia 817: 215–225.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em EcologiaUniversidade Federal do Pará e Embrapa Amazônia Oriental (UFPA/EMBRAPA)BelémBrazil
  2. 2.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos ContinentaisUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations