Food chain length and trophic niche of a key predator in montane desert streams

  • Tiffany A. SchrieverEmail author
  • David A. Lytle
Primary Research Paper


Top predator foraging strategy and prey base community composition can influence food web structure and function. To investigate the role of functional trait diversity and taxonomic richness in determining food chain length and energy flow in high elevation desert streams, we examined aquatic invertebrate community data along with carbon and nitrogen stable isotope analysis of a top predator, Abedus herberti (giant water bug). We also examined isotopic niche differences across different levels of population structure and seasons. We hypothesized that communities with higher richness would have longer food chains. We found food chain length did not vary substantially across a wide taxonomic and functional richness gradient, which contradicts theoretical mechanisms stating that more resources or higher functional diversity should lead to longer food chains. The isotopic niche of A. herberti was conserved across seasons and sites, and the majority of carbon in tissues came from allochthonous materials. Stable isotopes suggested that A. herberti occupy similar feeding niches in spring and autumn, despite seasonal changes in stream conditions, leaf litter inputs, and invertebrate community structure. Due to the strong aquatic–terrestrial linkages we identified, human activities and climate-driven alterations to the adjacent terrestrial environment may affect the dynamics and integrity of the within-stream ecosystem.


Aridland Biodiversity Functional richness Invertebrates tRophicPosition Spatial subsidies Top predator 



We thank Emily Hartfield Kirk and Haley Ohms for their help in the field collecting insects. We appreciate The Nature Conservancy for granting access to and lodging at the Ramsey Canyon Preserve, Arizona. Organisms were collected under permit at Fort Huachuca authorized by Sheridan Stone. The comments of anonymous reviewers helped to improve the paper. The US Department of Defense (SERDP RC-2203, RC-2511) provided funding to DAL.

Supplementary material

10750_2019_4115_MOESM1_ESM.docx (534 kb)
Supplementary material 1 (DOCX 533 kb)


  1. Allan, J. D., R. Abell, Z. Hogan, C. Revenga, B. W. Taylor, R. L. Welcomme & K. O. Winemiller, 2005. Overfishing of Inland waters. BioScience 55: 1041–1051.CrossRefGoogle Scholar
  2. Anderson, C. & G. Cabana, 2007. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Journal of the North American Benthological Society 26: 273–285.CrossRefGoogle Scholar
  3. Arim, M., P. A. Marquet & F. M. Jaksic, 2007. On the relationship between productivity and food chain length at different ecological levels. American Naturalist 169: 62–72.PubMedCrossRefGoogle Scholar
  4. Bartley, T. J., H. E. Braid, K. S. McCann, N. P. Lester, B. J. Shuter, B. J. Shuter & R. H. Hanner, 2015. DNA barcoding increases resolution and changes structure in Canadian boreal shield lake food webs. DNA Barcodes 3: 30–43.CrossRefGoogle Scholar
  5. Batschelet, E., 1981. Circular Statistics in Biology. Academic Press, London.Google Scholar
  6. Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller & H. Macleod, 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012.CrossRefGoogle Scholar
  7. Boersma, K. S., M. T. Bogan, B. A. Henrichs & D. A. Lytle, 2014. Top predator removals have consistent effects on large species despite high environmental variability. Oikos 123: 807–816.CrossRefGoogle Scholar
  8. Bogan, M. T. & D. A. Lytle, 2007. Seasonal flow variation allows ‘time-sharing’ by disparate aquatic insect communities in montane desert streams. Freshwater Biology 52: 290–304.CrossRefGoogle Scholar
  9. Bogan, M. T. & D. A. Lytle, 2011. Severe drought drives novel community trajectories in desert stream pools. Freshwater Biology 56: 2070–2081.CrossRefGoogle Scholar
  10. Bogan, M. T., K. S. Boersma & D. A. Lytle, 2013. Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshwater Biology 58: 1016–1028.CrossRefGoogle Scholar
  11. Bunn, S. E., S. R. Balcombe, P. M. Davies, C. S. Fellows & F. J. McKenzie-Smith, 2006. Aquatic Productivity and Food Webs of Desert River Ecosystems Ecology of Desert Rivers. Cambridge University Press, Cambridge.Google Scholar
  12. Bunn, S. E., C. Leigh & T. D. Jardine, 2013. Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnology and Oceanography 58: 765–773.CrossRefGoogle Scholar
  13. Busch, D. E. & S. G. Fisher, 1981. Metabolism of a desert stream. Freshwater Biology 11: 301–307.CrossRefGoogle Scholar
  14. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.CrossRefGoogle Scholar
  15. Cornwell, W. K., D. W. Schwilk & D. D. Ackerly, 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465–1471.PubMedCrossRefGoogle Scholar
  16. Cushing, C. E. & J. D. Allan, 2001. Streams: Their Ecology and Life. Gulf Professional Publishing, Oxford.Google Scholar
  17. Darimont, C. T., P. C. Paquet & T. E. Reimchen, 2009. Landscape heterogeneity and marine subsidy generate extensive intrapopulation niche diversity in a large terrestrial vertebrate. Journal of Animal Ecology 78: 126–133.PubMedCrossRefGoogle Scholar
  18. Delong, M. D., J. H. Thorp, M. C. Thoms & L. M. McIntosh, 2011. Trophic niche dimensions of fi sh communities as a function of historical hydrological conditions in a Plains river. River Systems 19: 177–187.CrossRefGoogle Scholar
  19. Duffy, J. E., B. J. Cardinale, K. E. France, P. B. McIntyre, E. Thébault & M. Loreau, 2007. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters 10: 522–538.PubMedCrossRefGoogle Scholar
  20. Evangelista, C., A. Boiche, A. Lecerf & J. Cucherousset, 2014. Ecological opportunities and intraspecific competition alter trophic niche specialization in an opportunistic stream predator. Journal of Animal Ecology 83: 1025–1034.PubMedCrossRefGoogle Scholar
  21. Finn, D. S., M. S. Blouin & D. A. Lytle, 2007. Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshwater Biology 52: 1881–1897.CrossRefGoogle Scholar
  22. Finn, D. S., N. Bonada, C. Murria & J. M. Hughes, 2011. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. Journal of the North American Benthological Society 30: 963–980.CrossRefGoogle Scholar
  23. Francis, C. & F. Sheldon, 2002. River Red Gum (Eucalyptus camaldulensis Dehnh.) organic matter as a carbon source in the lower Darling River, Australia. Hydrobiologia 481: 113–124.CrossRefGoogle Scholar
  24. Huey, R. B. & E. R. Pianka, 1981. Ecological consequences of foraging mode. Ecology 62: 991–999.CrossRefGoogle Scholar
  25. Jackson, A. & A. Parnell, 2015. Stable Isotope Bayesian Ellipses in R.Google Scholar
  26. Jackson, A. L., R. Inger, A. C. Parnell & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595–602.PubMedCrossRefGoogle Scholar
  27. Jardine, T. D., K. A. Kidd, J. T. Polhemus & R. A. Cunjak, 2008. An elemental and stable isotope assessment of water strider feeding ecology and lipid dynamics: synthesis of laboratory and field studies. Freshwater Biology 53: 2192–2205.Google Scholar
  28. Jiang, L. & P. J. Morin, 2005. Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity. The American Naturalist 165: 350–363.PubMedCrossRefGoogle Scholar
  29. Jost, L., 2006. Entropy and diversity. Oikos 113: 363–375.CrossRefGoogle Scholar
  30. Knight, T. M., M. W. McCoy, J. M. Chase, K. A. McCoy & R. D. Holt, 2005. Trophic cascades across ecosystems. Nature 437: 880–883.PubMedCrossRefGoogle Scholar
  31. Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.PubMedCrossRefGoogle Scholar
  32. Laliberté, E. & B. Shipley, 2011. FD: Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology.
  33. Layman, C. A., J. P. Quattrochi, C. M. Peyer & J. E. Allgeier, 2007. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecology Letters 10: 937–944.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lehmann, D., J. K. E. Mfune, E. Gewers, C. Brain & C. C. Voigt, 2015. Individual variation of isotopic niches in grazing and browsing desert ungulates. Oecologia 179: 75–88.PubMedCrossRefGoogle Scholar
  35. Lytle, D. A., 1999. Use of rainfall cues by Abedus herberti (Hemiptera: Belostomatidae): a mechanism for avoiding flash floods. Journal of Insect Behavior 12: 1–12.CrossRefGoogle Scholar
  36. Lytle, D. A., 2002. Flash floods and aquatic insect life-history evolution: evaluation of multiple models. Ecology 83: 370–385.CrossRefGoogle Scholar
  37. McCann, K., J. B. Rasmussen & J. Umbanhowar, 2005. The dynamics of spatially coupled food webs. Ecology Letters 8: 513–523.PubMedCrossRefPubMedCentralGoogle Scholar
  38. McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  39. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendal/Hunt Publishing Company, Dubuque.Google Scholar
  40. Minshall, G. W., 1978. Autotrophy in stream ecosystems. BioScience 28: 767–771.CrossRefGoogle Scholar
  41. Miserendino, M. L., 2001. Macroinvertebrate assemblages in Andean Patagonian rivers and streams: environmental relationships. Hydrobiologia 444: 147–158.CrossRefGoogle Scholar
  42. Moody, E. K., Y. Astudillo-Scalia, A. La Porte, C. Swanson & J. R. Corman, 2018. Consumption of animal carcasses by the putative leaf shredder Phylloicus mexicanus (Trichoptera: Calamoceratidae). The Southwestern Naturalist 63: 76–80.Google Scholar
  43. Moore, J. C., E. L. Berlow, D. C. Coleman, P. C. de Ruiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni & D. H. Wall, 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7: 584–600.CrossRefGoogle Scholar
  44. Ohba, S.-Y., J.-I. Takahashi & N. Okuda, 2013. A non-lethal sampling method for estimating the trophic position of an endangered giant water bug using stable isotope analysis. Insect Conservation and Diversity 6: 155–161.CrossRefGoogle Scholar
  45. Pace, M. L., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology & Evolution 14: 483–488.CrossRefGoogle Scholar
  46. Paine, R. T., 1966. Food web complexity and species diversity. The American Naturalist 100: 65–75.CrossRefGoogle Scholar
  47. Paine, R. T., 1980. Food webs: linkage, interaction strength and community infrastructure. Journal of Animal Ecology 49: 666–685.CrossRefGoogle Scholar
  48. Parnell, A., 2016. simmr: A Stable Isotope Mixing Model.
  49. Petchey, O. L. & K. J. Gaston, 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5: 402–411.CrossRefGoogle Scholar
  50. Petchey, O. L., P. T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69.CrossRefGoogle Scholar
  51. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  52. Phillipsen, I. C. & D. A. Lytle, 2013. Aquatic insects in a sea of desert: population genetic structure is shaped by limited dispersal in a naturally fragmented landscape. Ecography 36: 731–743.CrossRefGoogle Scholar
  53. Phillipsen, I. C., E. H. Kirk, M. T. Bogan, M. C. Mims, J. D. Olden & D. A. Lytle, 2015. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Molecular Ecology 24: 54–69.PubMedCrossRefGoogle Scholar
  54. Pimm, S. L., J. H. Lawton & J. E. Cohen, 1991. Food web patterns and their consequences. Nature 350: 669–674.CrossRefGoogle Scholar
  55. Post, D. M., 2002a. The long and short of food-chain length. Trends in Ecology & Evolution 17: 269–277.CrossRefGoogle Scholar
  56. Post, D. M., 2002b. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  57. Post, D. M. & G. Takimoto, 2007. Proximate structural mechanisms for variation in food-chain length. Oikos 116: 775–782.CrossRefGoogle Scholar
  58. Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.PubMedCrossRefGoogle Scholar
  59. Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montaña, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.PubMedCrossRefGoogle Scholar
  60. Quezada-Romegialli, C., A. Jackson, B. Hayden, K. Kahilainen, C. Lopes & C. Harrod, 2018. TRophicPosition, an R package for Bayesian estimation of trophic position from consumer stable istotope ratios. Methods in Ecology and Evolution 9: 1592–1599.CrossRefGoogle Scholar
  61. R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  62. Raso, L., D. Sint, R. Mayer, S. Plangg, T. Recheis, S. Brunner, R. Kaufmann & M. Traugott, 2014. Intraguild predation in pioneer predator communities of alpine glacier forelands. Molecular Ecology 23: 3744–3754.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Reid, D. J., G. P. Quinn, P. S. Lake & P. Reich, 2008. Terrestrial detritus supports the food webs in lowland intermittent streams of south-eastern Australia: a stable isotope study. Freshwater Biology 53: 2036–2050.CrossRefGoogle Scholar
  64. Reynolds, L. V., P. B. Shafroth & N. LeRoy Poff, 2015. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change. Journal of Hydrology 523: 768–780.CrossRefGoogle Scholar
  65. Ripple, W. J. & R. L. Beschta, 2012. Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction. Biological Conservation 145: 205–213.CrossRefGoogle Scholar
  66. Rodríguez-Lozano, P., I. Verkaik, M. Rieradevall & N. Prat, 2015. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream. PLoS ONE 10: e0117630.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Rooney, N. & K. S. McCann, 2012. Integrating food web diversity, structure and stability. Trends in Ecology & Evolution 27: 40–46.CrossRefGoogle Scholar
  68. Rooney, N., K. McCann, G. Gellner & J. C. Moore, 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.PubMedCrossRefGoogle Scholar
  69. Roughgarden, J., 1972. Evolution of niche width. American Naturalist 106: 683–718.CrossRefGoogle Scholar
  70. Runck, C. & D. W. Blinn, 1994. Role of Belostoma bakeri (Heteroptera) in the trophic ecology of a fishless desert spring. Limnology and Oceanography 39: 1800–1812.CrossRefGoogle Scholar
  71. Schade, J. D. & S. G. Fisher, 1997. Leaf litter in a Sonoran desert stream ecosystem. Journal of the North American Benthological Society 16: 612–626.CrossRefGoogle Scholar
  72. Schriever, T. A., M. T. Bogan, K. S. Boersma, M. Cañedo-Argüelles, K. L. Jaeger, J. D. Olden & D. A. Lytle, 2015. Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science 34: 399–409.CrossRefGoogle Scholar
  73. Shannon, C. E. & W. Weaver, 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana.Google Scholar
  74. Sinclair, A. R. E., S. Mduma & J. S. Brashares, 2003. Patterns of predation in a diverse predator–prey system. Nature 425: 288–290.PubMedCrossRefGoogle Scholar
  75. Sokołowski, A., M. Wołowicz, H. Asmus, R. Asmus, A. Carlier, Z. Gasiunaité, A. Grémare, H. Hummel, J. Lesutiené, A. Razinkovas, P. E. Renaud, P. Richard & M. Kędra, 2012. Is benthic food web structure related to diversity of marine macrobenthic communities? Estuarine, Coastal and Shelf Science 108: 76–86.CrossRefGoogle Scholar
  76. Vander Zanden, M. J. & W. W. Fetzer, 2007. Global patterns of aquatic food chain length. Oikos 116: 1378–1388.CrossRefGoogle Scholar
  77. Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in delta N-15 and delta C-13 trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  78. Vander Zanden, M. J., B. J. Shuter, N. P. Lester & J. B. Rasmussen, 2000. Within- and among-population variation in the trophic position of a pelagic predator, lake trout (Salvelinus namaycush). Canadian Journal of Fisheries and Aquatic Sciences 57: 725–731.CrossRefGoogle Scholar
  79. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aqautic Sciences 37: 130–137.CrossRefGoogle Scholar
  80. Velasco, J. & A. Millan, 1998. Feeding habits of two large insects from a desert stream: Abedus herberti (Hemiptera: Belostomatidae) and Thermonectus marmoratus (Coleoptera: Dytiscidae). Aquatic Insects 20: 85–96.CrossRefGoogle Scholar
  81. Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.PubMedCrossRefGoogle Scholar
  82. Warfe, D. M., T. D. Jardine, N. E. Pettit, S. K. Hamilton, B. J. Pusey, S. E. Bunn, P. M. Davies & M. M. Douglas, 2013. Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers. PLoS ONE 8: e66240.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wipfli, M. S., J. S. Richardson & R. J. Naiman, 2007. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association 43: 72–85.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Open AccessSpringer Nature terms of reuse for archived author accepted manuscripts (AAMs) of subscription articles For articles published within the Springer Nature group of companies that have been archived into academic repositories such as institutional repositories, PubMed Central and its mirror sites, where a Springer Nature company holds copyright, or an exclusive license to publish, users may view, print, copy, download and text and data-mine the content, for the purposes of academic research, subject always to the full conditions of use. The conditions of use are not intended to override, should any national law grant further rights to any user.Conditions of use Articles, books and chapters published within the Springer Nature group of companies which are made available through academic repositories remain subject to copyright. The following restrictions on use of such articles, books and chapters apply: Academic research only 1. Archived content may only be used for academic research. Any content downloaded for text based experiments should be destroyed when the experiment is complete. Reuse must not be for Commercial Purposes 2. Archived content may not be used for purposes that are intended for or directed towards commercial advantage or monetary compensation by means of sale, resale, licence, loan, transfer or any other form of commercial exploitation ("Commercial Purposes"). Wholesale re-publishing is prohibited 3. Archived content may not be published verbatim in whole or in part, whether or not this is done for Commercial Purposes, either in print or online. 4. This restriction does not apply to reproducing normal quotations with an appropriate citation. In the case of text-mining, individual words, concepts and quotes up to 100 words per matching sentence may be used, whereas longer paragraphs of text and images cannot (without specific permission from Springer Nature). Moral rights 5. All use must be fully attributed.  Attribution must take the form of a link - using the article DOI - to the published article on the journal's website. 6. All use must ensure that the authors' moral right to the integrity of their work is not compromised. Third party content 7. Where content in the document is identified as belonging to a third party, it is the obligation of the user to ensure that any use complies with copyright policies of the owner. Reuse at own risk 8. Any use of Springer Nature content is at your own risk and Springer Nature accepts no liability arising from such use.

Authors and Affiliations

  1. 1.Department of Biological Sciences and Institute of the Environment and SustainabilityWestern Michigan UniversityKalamazooUSA
  2. 2.Department of Integrative BiologyOregon State UniversityCorvallisUSA

Personalised recommendations