How and where to pass? Atlantic salmon smolt's behaviour at a hydropower station offering multiple migration routes

  • Séverine Renardy
  • Jean-Philippe Benitez
  • Amandine Tauzin
  • Arnaud Dierckx
  • Billy Nzau Matondo
  • Michaël OvidioEmail author
Primary Research Paper


We studied downstream migration behaviour of Atlantic salmon smolt at a hydropower station that offers four safe (weir, new incision gate on weir, downstream bypass and Archimedes screw) and one potentially unsafe (Kaplan turbines) migration routes. We followed hatchery smolts using radio (n = 17) and RFID (n = 200) telemetry. They were released 1.2 km upstream of the hydropower station in spring 2018, in four groups, at different water discharge (18 to 37.2 m3s−1) and temperature (12.2–17.6°C) conditions. For radio-tagged smolts, the repartition of the migration routes was 41.2% for the bypass, 17.6% for both the Kaplan turbine and the weir, 11.8% for the Archimedes screw, 0% for the new incision and 11.8% of unknown route. For the RFID-tagged smolts, the repartition was 38.0% for the bypass, 56.5% for the weir or the Kaplan, 4.5% for the new incision and 1.0% for the Archimedes Screw. The median time to cross the hydropower station was 58 min, and 88.2% of the smolts succeed to continue their downstream migration. The results demonstrate a diversity of choices of migration routes and underline the importance to optimise the position of fish-friendly turbines and fish passes at hydropower stations to increase their attractiveness.


Salmo salar Downstream migration Fish trajectory Fish telemetry Fish passage Archimedes screw 



Financial support for this study was provided by the Public Service of Wallonia, General Operational Direction of Agriculture, Natural Resources and Environment, Nature and Forest Department, thanks to the “Meuse Salmon program”. We thank Niels Duchesne for authorising access to the hydropower station during study and the SPW-SETHY for the water discharge data. We thank Prof. Fernando M. Pelicice (Associate Editor) and two anonymous referees for constructive comments on the first version of the manuscript.


  1. Aarestrup, K., C. Nielsen & A. Koed, 2002. Net ground speed of downstream migrating radio-tagged Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) smolts in relation to environmental factors. Hydrobiologia 483: 95–102.CrossRefGoogle Scholar
  2. Albayrak, I., C. R. Kriewitz, W. H. Hager & R. M. Boes, 2018. An experimental investigation on louvres and angled bar racks. Journal of Hydraulic Research 56: 59–75.CrossRefGoogle Scholar
  3. Benitez, J. P., B. Nzau Matondo, A. Dierckx & M. Ovidio, 2015. An overview of potamodromous fish upstream movements in medium-sized rivers, by means of fish passes monitoring. Aquatic Ecology 49: 481–497.CrossRefGoogle Scholar
  4. Benitez, J. P., A. Dierckx, B. Nzau Matondo, X. Rollin & M. Ovidio, 2018. Movement behaviours of potamodromous fish within a large anthropised river after the reestablishment of the longitudinal connectivity. Fisheries Research 207: 140–149.CrossRefGoogle Scholar
  5. Brackley, R., M. C. Lucas, R. Thomas, C. E. Adams & C. W. Bean, 2018. Comparison of damage to live v. euthanized Atlantic salmon (Salmo salar) smolts from passage through an Archimedean screw turbine. Journal of fish biology 92: 1635–1644.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Brevé, N., H. Vis, I. Spierts, G. de Laak, F. Moquette & A. Breukelaar, 2014. Exorbitant mortality of hatchery-reared Atlantic salmon smolts (Salmo salar L.), in the Meuse river system in the Netherlands. Journal of Coastal Conservation 18: 97–109.Google Scholar
  7. Brown, R. S., B. D. Pfugrath, A. H. Colotelo, C. J. Brauner, T. J. Carslon, Z. D. Deng & A. G. Seaburg, 2012. Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law. Fisheries Research 121(122): 43–50.CrossRefGoogle Scholar
  8. Calles, O., S. Karlsson, M. Hebrand & C. Comoglio, 2012. Evaluating technical improvements for downstream migrating diadromous fish at a hydroelectric plant. Ecological Engineering 48: 30–37.CrossRefGoogle Scholar
  9. Castro-Santos, T. & R. W. Perry, 2012. Time-to-event analysis as a framework for quantifying fish passage performance. In Adams, N. S., J. W. Beeman & J. Eiler (eds), Telemetry Techniques. American Fisheries Society, Bethesda: 427–452.Google Scholar
  10. Cefas, A., 2012. Assessment of Damage to Smolts Caused by Archimedes Screw Hydropower Turbines. T. R. I. Potter, P. Davison & A. Moore, Lowestoft.Google Scholar
  11. Cheng, Y. W. & M. P. Gallinat, 2014. Statistical analysis of the relationship among environmental variables, inter-annual variability and smolt trap efficiency of salmonids in the Tucannon River. Fisheries Research 70: 229–238.CrossRefGoogle Scholar
  12. Conrad, J. L., T. B. Weinersmith, T. Brodin & A. Sih, 2011. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. Journal of Fish Biology 78(2): 395–435.PubMedCrossRefGoogle Scholar
  13. Coutant, C. C. & R. R. Whitney, 2000. Fish behavior in relation to passage through hydropower turbines: a review. Transactions of the American Fisheries Society 129: 351–380.CrossRefGoogle Scholar
  14. ECOGEA, 2010. Test for evaluating the injuries suffered by downstream-migrating eels in their transiting through the new spherical discharge ring VLH turbogenerator unit installed on the Moselle river in Frouard. T. Lagarrigue & A. Frey, Toulouse.Google Scholar
  15. Fjeldstad, H. P., I. Uglem, O. H. Diserud, P. Fiske, T. Forseth, E. Kvingedal, et al., 2012. A concept for improving Atlantic salmon (Salmo salar) smolt migration past hydro power intakes. Journal of Fish Biology 81: 642–663.PubMedCrossRefGoogle Scholar
  16. Fjeldstad, H. P., K. Alfredsen & T. Boissy, 2014. Optimising Atlantic salmon smolt survival by use of hydropower simulation modelling in a regulated river. Fisheries Management and Ecology 21: 22–31.CrossRefGoogle Scholar
  17. Fjeldstad, H. P., K. U. Pulg & T. Forseth, 2018. Safe two-way migration for salmonids and eel past hydropower structures in Europe: a review and recommendations for best-practice solutions. Marine and Freshwater Research. Scholar
  18. Fu, T., Z. D. Deng, J. P. Duncan, D. Zhou, T. J. Carlson, G. E. Johnson & H. Hou, 2016. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. Renewable Energy 99: 1244–1252.CrossRefGoogle Scholar
  19. Fullerton, A. H., K. M. Burnett, E. A. Steel, R. L. Flitcroft, G. R. Pess, B. E. Feist, et al., 2010. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshwater biology 55: 2215–2237.CrossRefGoogle Scholar
  20. Haraldstad, T., T. Forseth & E. Höglund, 2018. Common mechanisms for guidance efficiency of descending Atlantic salmon smolts in small and large hydroelectric power plants. River Research and Applications 34: 1179–1185.CrossRefGoogle Scholar
  21. Haro, A., M. Odeh, J. Noreika & T. Castro-Santos, 1998. Effect of water acceleration on downstream migratory behavior and passage of atlantic salmon smolts and juvenile american shad at surface bypasses. Transactions of the American Fisheries Society 127: 118–127.CrossRefGoogle Scholar
  22. Havn, T. B., S. A. Sæther, E. B. Thorstad, M. A. K. Teichert, L. Heermann, O. H. Diserud, et al., 2017. Downstream migration of Atlantic salmon smolts past a low head hydropower station equippped with Archimedes screw and Francis turbines. Ecological Engineering 105: 262–275.CrossRefGoogle Scholar
  23. Havn, T. B., E. B. Thorstad, M. A. K. Teichert, S. A. Sæther, L. Heermann, R. D. Hedger, et al., 2018. Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine. Hydrobiologia 805: 273–290.CrossRefGoogle Scholar
  24. Holbrook, C. M., M. T. Kinnison & J. Zydlewski, 2011. Survival of migrating Atlantic salmon smolts through the Penobscot River, Maine: a prerestoration assessment. Transactions of the American Fisheries Society 140: 1255–1268.CrossRefGoogle Scholar
  25. Huet, M., 1949. Aperçu des relations entre la pente et les populations piscicoles des eaux courantes. Aquatic Sciences-Research Across Boundaries 11: 332–351.CrossRefGoogle Scholar
  26. Karppinen, P., P. Jounela, R. Huusko & J. Erkinaro, 2014. Effects of release timing on migration behaviour and survival of hatchery-reared Atlantic salmon smolts in a regulated river. Ecology of Freshwater Fish 23: 438–452.CrossRefGoogle Scholar
  27. Katopodis, C. & J. G. Williams, 2012. The development of fish passage research in a historical context. Ecological Engineering 48: 8–18.CrossRefGoogle Scholar
  28. Klopries, E. M., Z. D. Deng, T. U. Lachmann, H. Schüttrumpf & B. A. Trumbo, 2018. Surface bypass as a means of protecting downstream- migrating fish: lack of standardised evaluation criteria complicates evaluation of efficacy. Marine and Freshwater Research 69: 1882–1893.CrossRefGoogle Scholar
  29. Koed, A., N. Jepsen, K. Aarestrup & C. Nielsen, 2002. Initial mortality of radio-tagged Atlantic salmon (Salmo salar L.) smolts following release downstream of a hydropower station. Hydrobiologia 483: 31–37.CrossRefGoogle Scholar
  30. Larinier, M., 2001. Environmental issues, dams and fish migration. In Marmulla, G. (ed), FAO fisheries technical paper: Vol. 419 Dams, Fish and Fisheries: Opportunities, challenges and conflict resolution: 45–89.Google Scholar
  31. Larinier, M., 2008. Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609: 97–108.CrossRefGoogle Scholar
  32. Larinier, M. & D. Couret, 2008. Guide pour la conception de prises d’eau « ichtyocompatibles » pour les petites centrales hydroélectriques. Rapport GHAAPPE RA08, 4Google Scholar
  33. Larinier, M. & F. Travade, 1998. Petits aménagements hydroélectriques et libre circulation des poissons migrateurs. La Houille Blanche: 46–51.Google Scholar
  34. Larinier, M. & F. Travade, 2002. Downstream migration: problems and facilities. Bulletin Français de la Pêche et de la Pisciculture: 181–207.Google Scholar
  35. Lashofer, A., W. Hawle, I. Kampel, F. Kaltenberger & B. Pelikan, 2012. State of technology and design guidelines for the Archimedes Screw turbine. Conference: Hydro 2012—Innovative Approaches to Global Challenge At: Bilbao, SPAINVolume: The international Journal on Hydropower & Dams, Hydro 2012—Proceedings—Full papers.Google Scholar
  36. Marschall, E. A., M. E. Mather, D. L. Parrish, G. W. Allison & J. R. McMenemy, 2011. Migration delays caused by anthropogenic barriers: modeling dams, temperature, and success of migrating salmon smolts. Ecological Applications 21: 3014–3031.CrossRefGoogle Scholar
  37. McCormick, S. D., L. P. Hansen, T. P. Quinn & R. L. Saunders, 1998. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 55: 77–92.CrossRefGoogle Scholar
  38. Monnerjahn, U., 2011. Atlantic Salmon (Salmo salar L.) re-introduction in Germany: a status report on national programmes and activities. Journal of Applied Ichthyology 27: 33–40.CrossRefGoogle Scholar
  39. Moore, A., L. Privitera, M. J. Ives, J. Uzyczak & W. R. Beaumont, 2018. The effects of a small hydropower scheme on the migratory behaviour of Atlantic salmon (Salmo salar) smolts. Journal of fish biology 93: 469–476.PubMedCrossRefGoogle Scholar
  40. Newton, M., J. Barry, J. A. Dodd, M. C. Lucas, P. Boylan & C. E. Adams, 2018. A test of the cumulative effect of river weirs on downstream migration success, speed and mortality of Atlantic salmon (Salmo salar) smolts: an empirical study. Ecology of Freshwater Fish. Scholar
  41. Nyqvist, D., L. A. Greenberg, E. Goerig, O. Calles, E. Bergman, W. R. Ardren & T. Castro-Santos, 2016. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecology of Freshwater Fish 26: 707–718.CrossRefGoogle Scholar
  42. Ovidio, M. & J. C. Philippart, 2002. The impact of small physical obstacles on upstream movements of six species of fish: synthesis of a 5-year telemetry study in the River Meuse basin. Hydrobiologia 483: 55–69.CrossRefGoogle Scholar
  43. Ovidio, M., E. Baras, D. Goffaux, C. Birtles & J. C. Philippart, 1998. Environmental unpredictability rules the autumn migration of brown trout (Salmo trutta L.) in the Belgian Ardennes. Hydrobiologia 371(372): 263–274.CrossRefGoogle Scholar
  44. Ovidio, M., A. Dierckx, S. Bunel, L. Grandry, C. Spronck & J. P. Benitez, 2017a. Poor performance of a retrofitted downstream bypass revealed by the analysis of approaching behaviour in combination with a trapping system. River Research and Applications 33: 27–36.CrossRefGoogle Scholar
  45. Ovidio, M., D. Sonny, A. Dierckx, Q. Watthez, S. Bourguignon, B. de le Court, O. Detrait & J. P. Benitez, 2017b. The use of behavioural metrics to evaluate fishway efficiency. River Research and Applications 33: 1484–1493.CrossRefGoogle Scholar
  46. Parrish, D. L., R. J. Behnke, S. R. Gephard, S. D. Mc Cormick & G. H. Reeves, 1998. Why aren’t there more Atlantic salmon (Salmo salar)? Canadian Journal of Fisheries and Aquatic Sciences 55: 281–287.CrossRefGoogle Scholar
  47. Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of neotropical migratory fish. Fish and Fisheries 16: 697–715.CrossRefGoogle Scholar
  48. Philippart, J., J. Micha, E. Baras, C. Prignon, A. Gillet & S. Joris, 1994. The Belgian project “meuse salmon 2000”. First results, problems and future prospects. Water Science and Technology 29: 315–317.CrossRefGoogle Scholar
  49. Piper, A. T., P. J. Rosewarne, R. M. Wright & P. S. Kemp, 2018. The impact of an Archimedes screw hydropower turbine on fish migration in a lowland river. Ecological Engineering 118: 31–42.CrossRefGoogle Scholar
  50. Riley, W. D., M. O. Eagle & S. J. Ives, 2002. The onset of downstream movement of juvenile Atlantic salmon (Salmo salar L.) in a chalk stream. Fisheries Management and Ecology 9: 87–94.CrossRefGoogle Scholar
  51. Scruton, D. A., R. S. McKinley, N. Kouwen, W. Eddy & R. K. Booth, 2003. Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts. River Research and Applications 19: 605–617.CrossRefGoogle Scholar
  52. Scruton, D. A., C. J. Pennell, C. E. Bourgeois, R. F. Goosney, T. R. Porter & K. D. Clarke, 2007. Assessment of a retrofitted downstream fish bypass system for wild Atlantic salmon (Salmo salar) smolts and kelts at a hydroelectric facility on the Exploits River, Newfoundland, Canada. Hydrobiologia 582: 155–169.CrossRefGoogle Scholar
  53. Serrano, I., P. Rivinoja, L. Karlsson & S. Larsson, 2009. Riverine and early marine survival of stocked salmon smolts (Salmo salar L.) descending the Testebo River. Sweden. Fisheries Management and Ecology 16: 386–394.CrossRefGoogle Scholar
  54. Silva, A. T., M. C. Lucas, T. Castro-Santos, C. Katopodis, L. J. Baumgartner, J. D. Thiem, et al., 2018. The future of fish passage science, engineering, and practice. Fish and Fisheries 19: 340–362.CrossRefGoogle Scholar
  55. Stich, D. S., M. T. Kinnisson, J. F. Kocik & J. D. Zydlewski, 2015. Initiation of migration and movement rates of Atlantic salmon smolts in fresh water. Canadian Journal of Fisheries and Aquatic Sciences 72(9): 1339–1351.CrossRefGoogle Scholar
  56. Svendsen, J. C., K. Aarestrup, H. Malte, U. H. Thygesen, H. Baktoft, A. Koed, et al., 2011. Linking individual behaviour and migration success in Salmo salar smolts approaching a water withdrawal site: implications for management. Aquatic Living Resources 24: 201–209.CrossRefGoogle Scholar
  57. Tétard, S., A. Maire, M. Lemaire, E. De Oliveira, P. Martin & C. Dominique, 2019. Behaviour of Atlantic salmon smolts approaching a bypass under light and dark conditions: importance of fish development. Ecological Engineering 131: 39–52.CrossRefGoogle Scholar
  58. Thorstad, E., B. Finstad, R. Sivertsgrd, P. Bjorn & R. McKinleyd, 2004. Migration speeds and orientation of Atlantic salmon and sea trout post-smolts in a Norwegian fjord system. Environmental Biology of Fishes 71: 305–311.CrossRefGoogle Scholar
  59. Thorstad, E. B., F. Whoriskey, I. Uglem, A. Moore, A. H. Rikardsen & B. Finstad, 2012. A critical life stage of the Atlantic salmon (Salmo salar): behaviour and survival during the smolt and initial post-smolt migration. Journal of Fish Biology 81: 500–542.PubMedCrossRefGoogle Scholar
  60. Thorstad, E. B., T. B. Havn, S. A. Sæther, L. Heermann, M. A. K. Teichert, O. H. Diserud, et al., 2017. Survival and behaviour of Atlantic salmon smolts passing a run-of-river hydropower facility with a movable bulb turbine. Fisheries Management and Ecology 24: 199–207.CrossRefGoogle Scholar
  61. Tomanova, S., D. Courret & A. Alric, 2017. Protecting fish from entering turbines: the efficiency of a low-sloping rack for downstream migration of Atlantic salmon smolts. Houille Blanche. Scholar
  62. Tomanova, S., D. Courret, A. Alric, E. Oliveira, T. Lagarrigue & S. Tétard, 2018. Protecting efficiently sea-migrating salmon smolts from entering hydropower plant turbines with inclined or oriented low bar spacing racks. Ecological Engineering 122: 143–152.CrossRefGoogle Scholar
  63. Wilkes, M. A., J. A. Webb, P. S. Pompeu, L. G. M. Silva, A. S. Vowles, C. F. Baker, P. Franklin, O. Link & P. S. Kemp, 2018a. Not just a migration problem: metapopulations, habitat shifts, and gene flow are also important for fishway science and management. River Research and Application. Scholar
  64. Wilkes, M. A., L. Baumgartner, C. Boys, L. G. M. Silva, J. O’Connor, M. Jones, I. Stuart, E. Habit, O. Link & J. A. Webb, 2018b. Fish-Net: probabilistic models for fishway planning, design and monitoring to support environmentally sustainable hydropower. Fish and Fisheries 19: 677–697.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biology of Behaviour Unit, Laboratory of Fish Demography and HydroecologyUniversity of Liège, UR-FOCUSLiègeBelgium

Personalised recommendations