Analysis of the morphological structure of diapausing propagules as a potential tool for the identification of rotifer and cladoceran species

  • Gerardo Guerrero-JiménezEmail author
  • Eloísa Ramos–Rodríguez
  • Marcelo Silva-Briano
  • Araceli Adabache-Ortiz
  • José María Conde-Porcuna
Primary Research Paper


The study of zooplankton diversity through the analysis of the active community implicates repeated samplings at different sites of the lake, throughout different seasons and years. A valid cost-effective alternative for the analysis of zooplankton species richness is represented by the study of their diapausing propagules. This method allows retrieving in a single sampling the same number of species found in the water column over a period of many years. However, the lack of a reference database of diapausing propagules’ diagnostic characters has, so far, precluded the use of morphology for the identification of egg species. In the present study, an analysis of the morphological characters of rotifer and cladoceran diapausing propagules was performed with Light Microscope (LM) and Scanning Electron Microscope (SEM) to identify possible diagnostic features that would allow identification of their species without having to incubate the sediment first to obtain adults that can be identified. A total of 3780 diapausing eggs of 23 species of rotifers and cladocerans, collected in eleven lakes from five different regions of Spain and Mexico, were morphologically analyzed. High evidence of species-specificity was observed in most rotifer species, while cladoceran diapausing propagules could be only identified to genus level.


Cladocera Ephippium Hatching Resting eggs Rotifers 



The first author would like to thank CONACyT for providing the PhD scholarship, which allowed carrying out the present study. The authors thank two anonymous reviewers for their useful comments that helped improve the manuscript.

Supplementary material

10750_2019_4085_MOESM1_ESM.png (2 mb)
Supplementary material 1 (PNG 2,050 kb). Pictures of the ephippium of D. pulicaria from Rio Seco extracted from the water column


  1. Alonso, M., 1996. Fauna Ibérica. Vol. 7. Crustacea. Branchiopoda. Museo Nacional de Ciencias Naturales, Madrid: 486.Google Scholar
  2. Aranda-Gómez, J. J., G. Levresse, J. Pacheco-Martínez, J. A. Ramos-Leal, G. Carrasco-Nuñez, E. Chacón-Baca, G. González-Naranjo, G. Chávez-Cabello, M. Vega-González, G. Origel & C. Noyola-Medrano, 2013. Active sinking at the bottom of the Rincón de Parangueo Maar (Guanajuato, México) and its probable relation with subsidence faults at Salamanca and Celaya. Boletín de la Sociedad Geológica Mexicana 65: 169–188.CrossRefGoogle Scholar
  3. Arnott, S. E., J. J. Magnuson & N. D. Yan, 1998. Crustacean zooplankton species richness: single- and multiple- year estimates. Canadian Journal of Fisheries and Aquatic Science 55: 1573–1582.CrossRefGoogle Scholar
  4. Arnott, S. E., N. D. Yan, J. J. Magnuson & T. M. Frost, 1999. Interannual variability and species turnover of crustacean zooplankton in shield lakes. Canadian Journal of Fisheries and Aquatic Science 56: 162–172.CrossRefGoogle Scholar
  5. Birky, C. W., C. Wolf, H. Maughan, L. Herbertson & E. Henry, 2005. Speciation and selection without Sex. Hydrobiologia 546: 29–45.CrossRefGoogle Scholar
  6. Bogoslovsky, A. S., 1963. Materials to the study of the resting eggs of rotifers. Communication I. Byull. Mosk. Obshch. Ispyt Prir 68: 50–67.Google Scholar
  7. Bogoslovsky, A. S., 1967. Materials to the study of the resting eggs of rotifers. Communication 2. Bjulleten Moscovskogo obscestva ispytatelej prirody. Otdel Biologiceskij 72: 46–67. (in Russian with English summary).Google Scholar
  8. Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.CrossRefGoogle Scholar
  9. Ciros-Pérez, J., A. Gómez & M. Serra, 2001. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research 23: 1311–1328.CrossRefGoogle Scholar
  10. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Instituto del Medio Ambiente del Estado de Aguascalientes (IMAE) y Gobierno del Estado de Aguascalientes, 2007. Guía de Aves de la presa “El Cedazo”. CIPAMEX. México: 30–100.Google Scholar
  11. Crispim, M. C. & T. Watanabe, 2001. What can dry reservoir sediments in a semi-arid region in Brazil tell us about Cladocera? Hydrobiologia 442: 101–105.CrossRefGoogle Scholar
  12. de Beauchamp, P. M., 1952. Un facteur de la variabilite chez les rotiferes du genre Brachionus. Comptes Redus de I´Académie des Science 234: 573–575.Google Scholar
  13. de Beauchamp, P. M., 1965. Classe des Rotifères. Traite de Zoologie, Anatomie, Systématique, Biologie 3: 1225–1379.Google Scholar
  14. De Meester, L., P. Dawidowicz, E. van Gool & C. J. Loose, 1999. Ecology and evolution of predator-induced behavior of zooplankton: depth selection behavior and diel vertical migration. In Tollrian, R. & C. D. Harvell (eds), The ecology and evolution of inducible defenses. Princeton University Press, Princeton.Google Scholar
  15. Duggan, I. C., J. D. Green & R. J. Shiel, 2002. Rotifer egg densities in lakes of different trophic state, and their assessment using emergence and egg counts. Archiv für Hydrobiologie 153: 409–420.CrossRefGoogle Scholar
  16. Fontaneto, D., M. Kaya, E. A. Herniou & T. G. Barraclough, 2009. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution 53: 182–189.CrossRefPubMedGoogle Scholar
  17. Forró, L., N. M. Korovchinsky, A. A. Kotov & A. Petrusek, 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595: 177–184.CrossRefGoogle Scholar
  18. Garcıa, C. M., R. Garcia-Ruiz, M. F. Rendon, X. Niell & J. Lucena, 1997. Hydrological cycle and interannual variability of the aquatic community in a temporary saline lake (Fuente de Piedra, Southern Spain). Hydrobiologia 345: 131–141.CrossRefGoogle Scholar
  19. García-Morales, A. E. & M. Elías-Gutiérrez, 2013. DNA barcoding of freshwater Rotifera in Mexico: evidence of cryptic speciation in common rotifers. Molecular Ecology Resources 13: 1097–1107.PubMedGoogle Scholar
  20. Gilbert, J. J. & E. S. Wurdak, 1978. Species-specific morphology of resting eggs in the Rotifer Asplanchna. Transactions of the American Microscopical Society 97: 330–339.CrossRefGoogle Scholar
  21. Gilbert, J. J., 1995. Structure, development and induction of a new diapause stage in rotifers. Freshwater Biology 34: 263–270.CrossRefGoogle Scholar
  22. Grover, J. P., 1999. Water fleas on cycles. Nature 402: 592–593.CrossRefGoogle Scholar
  23. Guzmán, J. R., E. Acosta & F. R. Palomino, 1996. Dictamen Técnico sobre el deterioro de la zona paleontológica del arroyo El Cedazo, Aguascalientes. Universidad Autónoma de Aguascalientes, México. Investigación y Ciencia 19: 50–55.Google Scholar
  24. Halbach, U., 1970. Die Ursachen der Temporalvariation von Brachionus calyciflorus Pallas (Rotatoria). Oecologia 4(262–3): 18.Google Scholar
  25. Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen & W. Hallwachs, 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 41: 14812–14817.CrossRefGoogle Scholar
  26. Jeppesen, E., P. Noges, T. A. Davidson, J. Haberman, T. Noges, B. Kätlin, L. L. Torben, M. Søndergaard, C. Sayer, R. Laugaste, L. S. Johansson, R. Bjerring & S. L. Amsinck, 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297.CrossRefGoogle Scholar
  27. Keough, J. R., T. A. Thompson & G. R. Guntenspergen, 1999. Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes. Wetlands 19: 821–834.CrossRefGoogle Scholar
  28. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Gebr. Borntraeger, Berlin, Stuttgart, 673 Seiten.Google Scholar
  29. Linares-Cuesta, E. J., L. Olofsson & P. Sanchez-Castillo, 2007. Comunidades de diatomeas epipélicas en las lagunas de alta montaña de Sierra Nevada (Granada, España). Limnetica 26: 99–113.Google Scholar
  30. Marcus, N. H., 1990. Calanoid copepod, cladoceran, and rotifer eggs in sea-bottom sediments of northern Californian coastal waters: identification, occurrence and hatching. Marine Biology 105: 413–418.CrossRefGoogle Scholar
  31. May, L., 1986. Rotifer sampling a complete species list from one visit. Hydrobiologia 134: 117–120.CrossRefGoogle Scholar
  32. Michaloudi, E., S. Mills, S. Papakostas, C. P. Stelzer, A. Triantafyllidis, I. Kappas & T. J. Abatzopoulos, 2017. Morphological and taxonomic demarcation of Brachionus asplanchnoidis Charin within the Brachionus plicatilis cryptic species complex (Rotifera, Monogononta). Hydrobiologia 796: 19–37.CrossRefGoogle Scholar
  33. Mills, S., J. A. Alcantara-Rodriguez, J. Ciros-Perez, A. Gomez, A. Hagiwara, K. H. Galindo, C. D. Jersabek, R. Malekzadeh-Viayeh, F. Leasi, J. S. Lee, D. B. M. Welch, S. Papakostas, S. Riss, H. Segers, M. Serra, R. Shiel, R. Smolak, T. Snell, C. P. Stelzer, C. Q. Tang, R. Wallace, D. Fontaneto & E. J. Walsh, 2017. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiología 796: 1–20.CrossRefGoogle Scholar
  34. Minkoff, G., E. Lubzens & D. Kahan, 1983. Environmental factors affecting hatching of rotifer (Brachionus plicatilis) resting eggs. Hydrobiologia 104: 61–69.CrossRefGoogle Scholar
  35. Mooser, O., 1980. Pleistocene Fossil Turtles from Aguascalientes, state of Aguascalientes. Univeridad Nacional Autónoma de México, Instituto de Geología 4: 63–66.Google Scholar
  36. Moreno, E., J. M. Conde-Porcuna & A. Gómez, 2017. Barcoding rotifer biodiversity in Mediterranean ponds using diapausing egg banks. Ecology and Evolution 7: 4855–4867.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nevalainen, L., M. Brown & M. Manca, 2018. Sedimentary Record of Cladoceran Functionality under Eutrophication and Re-Oligotrophication in Lake Maggiore, Northern Italy. Water 10: 86.CrossRefGoogle Scholar
  38. Nipkow, F., 1961. Die Rädertiere im Plankton des Zürichsees und ihre Entwicklungsphasen. Schweiz. Z. Hydrologie 23: 398–461.Google Scholar
  39. Odum, W. E., M. L. Dunn & T. J. Smith, 1978. Habitat value of tidal freshwater wetlands. In Clark, J. R. & J. E. Clark (eds), Wetland Functions and Values: The State of Our Understanding. Minneapolis. American Water Recourses Association, Minneapolis: 248–255.Google Scholar
  40. Onbé, T., 1978. Sugar flotation method for sorting the resting eggs of marine cladocerans and copepods from sea-bottom sediment. Bulletin of the Japanese Society Scientific Fisheries 44: 1411.CrossRefGoogle Scholar
  41. Pérez-Martínez, C., L. Jiménez, E. Moreno & J. M. Conde-Porcuna, 2013. Emergence pattern and hatching cues of Daphnia pulicaria (Crustacea, Cladocera) in an alpine lake. Hydrobiologia 707: 47–57.CrossRefGoogle Scholar
  42. Piscia, R., P. Guilizzoni, D. Fontaneto, D. A. Vignati, P. G. Appleby & M. Manca, 2012. Dynamics of rotifer and cladoceran resting stages during copper pollution and recovery in a subalpine lake. Annales de Limnologie-International Journal of Limnology 48: 151–160.CrossRefGoogle Scholar
  43. Piscia, R., S. Tabozzi, R. Bettinetti, L. Nevalainen & M. Manca, 2016. Unexpected increases in rotifer resting egg abundances during the period of contamination of Lake Orta. Journal of Limnology 75: 76–85.Google Scholar
  44. Pourriot, R. & T. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.CrossRefGoogle Scholar
  45. Puillandre, N., M. V. Modica, Y. Zhang, L. Sirovich, M.-C. Boisselier, C. Cruaud, M. Holford & S. Samadi, 2012. Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21: 2671–2691.CrossRefPubMedGoogle Scholar
  46. Schröder, T., 2001. Colonising strategies and diapause of planktonic rotifers (Monogononta, Rotifera) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany). International Review of Hydrobiology 86: 635–660.CrossRefGoogle Scholar
  47. Schröder, T. & E. J. Walsh, 2007. Cryptic speciation in the cosmopolitan Epiphanes senta complex (Monogononta, Rotifera) with the description of new species. Hydrobiologia 593: 129–140.CrossRefGoogle Scholar
  48. Segers, H., 2008. Global diversity of rotifers (Phylum Rotifera) in freshwater. In Balian, E. V., C. Lévêque, H. Segers & K. Martens (eds), Freshwater Animal Diversity Assessment. Hydrobiologia present volume. Springer, Berlin.Google Scholar
  49. Suzduki, M., 1964. New systematical approach to the Japanese planktonic Rotatoria. Hydrobiologia 23: 1–124.CrossRefGoogle Scholar
  50. Vandekerkhove, J., S. Declerck, M. Vanhove, L. Brendonck, E. Jeppesen, J. M. Conde Porcuna & L. De Meester, 2004. Use of ephippial morphology to assess richness of anomopods: potentials and pitfalls. Journal of Limnology 63: 75–84.CrossRefGoogle Scholar
  51. Vandekerkhove, J., S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, L. Brendonck & L. De Meester, 2005a. Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 142: 109–116.CrossRefPubMedGoogle Scholar
  52. Vandekerkhove, J., S. Declerck, L. Brendonck, J. M. Conde-Porcuna, E. Jeppesen, L. S. Johansson & L. De Meester, 2005b. Uncovering hidden species: hatching diapausing eggs for the analysis of cladoceran species richness. Limnology and Oceanography: Methods 3: 399–407.Google Scholar
  53. Walsh, E. J., L. May & R. L. Wallace, 2017. A metadata approach to documenting sex in phylum Rotifera: diapausing embryos, males, and hatchlings from sediments. Hydrobiologia 796: 265–276.CrossRefGoogle Scholar
  54. Wesenberg-Lund, C., 1930. Contributions to the biology of the Rotifera. 2. The periodicity and sexual periods. Kgl. Danske videnskabernes Selskabs Skrifter, Naturvidenskabeli Mathematisk Afdeling 9 2: 230.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gerardo Guerrero-Jiménez
    • 1
    Email author
  • Eloísa Ramos–Rodríguez
    • 1
    • 2
  • Marcelo Silva-Briano
    • 3
  • Araceli Adabache-Ortiz
    • 3
  • José María Conde-Porcuna
    • 1
    • 2
  1. 1.Instituto del AguaUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Ecología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Biología, Centro de Ciencias BásicasUniversidad Autónoma de AguascalientesAguascalientesMexico

Personalised recommendations