Analysis of the mitochondrial D-Loop reveals that neither river boundaries nor geographic distance structure the fine-scale genetic variation of an Amazonian treefrog

  • Jonatha Edson de Paula Lima
  • Vladimir Pavan MargaridoEmail author
  • Rafaela Maria Moresco
  • Domingos de Jesus Rodrigues
Primary Research Paper


While most anurans have limited vagility and local fidelity, there are some exceptions. In the present study, we used Boana boans, a large treefrog found throughout most of the Amazon basin, as a model organism. We investigated the possible isolation of the B. boans demes located on opposite margins of the Juruena River and their population structure. We sampled 14 individuals of B. boans and analyzed the mitochondrial D-Loop to verify whether the river or Euclidean distance is acting as barrier to the dispersal of this frog. The sequencing revealed 12 haplotypes, with global Fst values of − 0.079, K2P values ranging from − 0.187 to 0.054, and primarily intrapopulation (81.78%) genetic diversity, with only 18.22% of the variation being found among populations. Analysis of molecular variance and Bayesian cluster analysis detected a lack of genetic structuring within the study area. The model species presented a capacity for dispersal over long distances in comparison with most other amphibians, which, together with its resistance to desiccation and reproductive mode, enable this treefrog to disperse across rivers and overland. In the specific case of Juruena River, many fluvial islands present within the study area may also be favorable to the dispersal of the species.


Anura Boana boans D-Loop Landscape genetics River barriers 



We thank CAPES (Coordenadoria de Aperfeiçoamento de Ensino Superior), Fundação Araucária, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and FAPEMAT (Fundação de Amparo à Pesquisa do Estado de Mato Grosso). We are also grateful to the Instituto Chico Mendes de Conservação da Biodiversidade (MMA ICMBio) for the authorization of the collection of anuran specimens (license number: SISBIO 31060-1). We also thank the Universidade Estadual do Oeste do Paraná (UNIOESTE) and the Cuiabá and Sinop campi of the Universidade Federal de Mato Grosso (UFMT). Moreover, we will always be grateful to the ONF (Office National des Forêts) Brazil and entire team of the São Nicolau Farm for the reception and support in the field period.


  1. Amézquita, A., A. P. Lima, R. Jehle, L. Castellanos, Ó. Ramos, A. J. Crawford, H. Gasser & W. Hödl, 2009. Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biological Journal of the Linnean Society 98: 826–838.CrossRefGoogle Scholar
  2. Angelone, S., F. Kienast & R. Holderegger, 2011. Where movement happens: scale-dependent landscape effects on genetic differentiation in the European tree frog. Ecography 34: 714–722.CrossRefGoogle Scholar
  3. Arif, I. A. & H. A. Khan, 2009. Molecular markers for biodiversity analysis of wildlife animals: a brief review. Animal Biodiversity and Conservation 32: 9–17.Google Scholar
  4. Ayres, J. M. & T. H. Clutton-Brock, 1992. River boundaries and species range size in amazonian primates. The American Naturalist 140: 531–537.PubMedCrossRefGoogle Scholar
  5. Bates, J. M., J. Haffer & E. Grismer, 2004. Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian river. Journal of Ornithology 145: 199–205.CrossRefGoogle Scholar
  6. Born, C., O. J. Hardy, M. H. Chevallier, S. Ossari, C. Attéké, E. J. Wickings & M. Hossaert-Mckey, 2008. Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Molecular Ecology 17: 2041–2050.PubMedCrossRefGoogle Scholar
  7. Brown, G. G., G. Gadaleta, G. Pepe, C. Saccone, E. Sbisa & B. Bnri, 1986. Structural conservation and variation in the region of vertebrate mitochondrial DNA. Journal of Molecular Biology 192(3): 503–511.PubMedCrossRefGoogle Scholar
  8. Brunes, T. O., M. T. C. Thomé, J. Alexandrino, C. F. B. Haddad & F. Sequeira, 2015. Ancient divergence and recent population expansion in a leaf frog endemic to the southern Brazilian Atlantic forest. Organisms Diversity and Evolution 15: 695–710.CrossRefGoogle Scholar
  9. Chen, S. Y., Y. J. Zhang, X. L. Wang, J. Y. Sun, Y. Xue, P. Zhang, H. Zhou & L. H. Qu, 2012. Extremely low genetic diversity indicating the endangered status of Ranodon sibiricus (amphibia: Caudata) and implications for phylogeography. PLoS ONE 7: e33378.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.PubMedCrossRefGoogle Scholar
  11. Corander, J., L. Cheng, P. Marttinen & J. Tang, 2013. BAPS: Bayesian analysis of population structure. Manual v 6.0. Bioinformatics 28: 2537–2539.Google Scholar
  12. Coster, S. S., K. J. Babbitt, A. Cooper & A. I. Kovach, 2015. Limited influence of local and landscape factors on finescale gene flow in two pond-breeding amphibians. Molecular Ecology 24: 742–758.PubMedCrossRefGoogle Scholar
  13. Crawford, A. J., 2003. Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences. Molecular Ecology 12: 2525–2540.PubMedCrossRefGoogle Scholar
  14. de Oliveira, M., G. F. Aver, L. F. B. Moreira, P. Colombo & A. M. Tozetti, 2016. Daily movement and microhabitat use by the Blacksmith treefrog hypsiboas faber (Anura: Hylidae) during the breeding season in a subtemperate forest of Southern Brazil. South American Journal of Herpetology 11: 89–97.CrossRefGoogle Scholar
  15. Degner, J. F., D. M. Silva, T. D. Hether, J. M. Daza & E. A. Hoffman, 2010. Fat frogs, mobile genes: unexpected phylogeographic patterns for the ornate chorus frog (Pseudacris ornata). Molecular Ecology 19: 2501–2515.PubMedGoogle Scholar
  16. Duarte, L. D. S., R. S. Bergamin, V. Marcilio-Silva, G. D. D. S. Seger & M. C. M. Marques, 2014. Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex. PLoS ONE 9: 1–10.Google Scholar
  17. Escudero, A., J. M. Iriondo & M. E. Torres, 2003. Spatial analysis of genetic diversity as a tool for plant conservation. Biological Conservation 113: 351–365.CrossRefGoogle Scholar
  18. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.PubMedCrossRefGoogle Scholar
  19. Farasat, H., V. Akmali & M. Sharifi, 2016. Population genetic structure of the endangered Kaiser’s mountain newt, Neurergus kaiseri (Amphibia: Salamandridae). PLoS ONE 11: 1–16.CrossRefGoogle Scholar
  20. Fouquet, A., J.-B. Ledoux, V. Dubut, B. P. Noonan & I. Scotti, 2012. The interplay of dispersal limitation, rivers, and historical events shapes the genetic structure of an Amazonian frog historical events shapes the genetic structure of an. Biological Journal of the Linnean Society 106: 356–373.CrossRefGoogle Scholar
  21. Fouquet, A., E. A. Courtois, D. Baudain, J. D. Lima, S. M. Souza, B. P. Noonan & M. T. Rodrigues, 2015. The trans-riverine genetic structure of 28 Amazonian frog species is dependent on life history. Journal of Tropical Ecology 31: 361–373.CrossRefGoogle Scholar
  22. Funk, W. C., M. S. Blouin, P. S. Corn, B. A. Maxell, D. S. Pilliod, S. Amish & F. W. Allendorf, 2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology 14: 483–496.PubMedCrossRefGoogle Scholar
  23. Funk, W. C., J. P. Caldwell, C. E. Peden, J. M. Padial, I. De & D. C. Cannatella, 2007. Tests of biogeographic hypotheses for diversification in the Amazonian forest frog, Physalaemus petersi. Molecular Phylogenetics and Evolution 44: 825–837.PubMedCrossRefGoogle Scholar
  24. Gascon, C., S. C. Lougheed & J. P. Bogart, 1998. Patterns of genetic population differentiation in four species of Amazonian Frogs: a test of the riverine barrier hypothesis. Biotropica 30: 104–119.CrossRefGoogle Scholar
  25. Godinho, M. B. D. C. & F. R. Da Silva, 2018. The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports Springer, US 8: 1–11.CrossRefGoogle Scholar
  26. Goebel, A. M., J. M. Donnelly & M. E. Atz, 1999. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochromebin bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Molecular Phylogenetics and Evolution 11: 163–199.PubMedCrossRefGoogle Scholar
  27. Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.PubMedCrossRefGoogle Scholar
  28. Gvoždík, V., J. Moravec, C. Klütsch & P. Kotlík, 2010. Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species. Molecular Phylogenetics and Evolution 55: 1146–1166.PubMedCrossRefGoogle Scholar
  29. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.Google Scholar
  30. Hoelzel, A. R., J. A. Hancock & G. A. Dover, 1991. Evolution of the Cetacean mitochondrial D-Loop region. Molecular Biology and Evolution 8: 475–493.PubMedGoogle Scholar
  31. Kaefer, I. L., B. M. Tsuji-Nishikido, E. P. Mota, I. P. Farias & A. P. Lima, 2013. The early stages of speciation in Amazonian forest frogs: phenotypic conservatism despite strong genetic structure. Evolutionary Biology 40: 228–245.CrossRefGoogle Scholar
  32. Kawabe, K., R. Worawut, S. Taura, T. Shimogiri, T. Nishida & S. Okamoto, 2014. Genetic diversity of mtDNA D-loop polymorphisms in laotian native fowl populations. Asian-Australasian Journal of Animal Sciences 27: 19–23.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.PubMedCrossRefGoogle Scholar
  34. Kumar, S., G. Stecher & K. Tamura, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.PubMedCrossRefGoogle Scholar
  35. Lougheed, S. C., C. Gascon, D. A. Jones, J. P. Bogart & P. T. Boag, 1999. Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society B 266: 1829–1835.PubMedCrossRefGoogle Scholar
  36. Magnusson, W. E., A. P. Lima & J. Hero, 1999. The rise and fall of a population of Hyla boans: reproduction in a Neotropical Gladiator Frog. Journal of Herpetology 33: 647–656.CrossRefGoogle Scholar
  37. Maia, G. F., A. P. Lima & I. L. Kaefer, 2017. Not just the river: genes, shapes, and sounds reveal population-structured diversification in the Amazonian frog Allobates tapajos (Dendrobatoidea). Biological Journal of the Linnean Society 20: 1–14.Google Scholar
  38. Moraes, L. J. C. L., D. Pavan, M. C. Barros & C. C. Ribas, 2016. The combined influence of riverine barriers and flooding gradients on biogeographical patterns for amphibians and squamates in south-eastern Amazonia. Journal of Biogeography 43: 2113–2124.CrossRefGoogle Scholar
  39. Nowakowski, A. J., J. A. Dewoody, M. E. Fagan, J. R. Willoughby & M. A. Donnelly, 2015. Mechanistic insights into landscape genetic structure of two tropical amphibians using field-derived resistance surfaces. Molecular Ecology 24: 580–595.PubMedCrossRefGoogle Scholar
  40. Ortiz, D. A., A. P. Lima & F. P. Werneck, 2018. Environmental transition zone and rivers shape intraspecific population structure and genetic diversity of an Amazonian rain forest tree frog. Evolutionary Ecology 32(4): 359–378.CrossRefGoogle Scholar
  41. Reading, C. J., J. Loman & T. Madsen, 1991. Breeding pond fidelity in the common toad, Bufo bufo. Journal of Zoology 225: 201–211.CrossRefGoogle Scholar
  42. Richardson, J. L., 2012. Divergent landscape effects on population connectivity in two co-occurring amphibian species. Molecular Ecology 21: 4437–4451.PubMedCrossRefGoogle Scholar
  43. Saitou, N. & M. Nei, 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.PubMedGoogle Scholar
  44. Santorelli, S., W. E. Magnusson & C. P. Deus, 2018. Most species are not limited by an Amazonian river postulated to be a border between endemism areas. Scientific Reports Springer, US 8: 2294.CrossRefGoogle Scholar
  45. Segelbacher, G., S. A. Cushman, B. K. Epperson, M. J. Fortin, O. Francois, O. J. Hardy, R. Holderegger, P. Taberlet, L. P. Waits & S. Manel, 2010. Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics 11: 375–385.CrossRefGoogle Scholar
  46. Shaffer, H. B. & M. L. McKnight, 1996. The polytypic species revisited: genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 50: 417–433.PubMedCrossRefGoogle Scholar
  47. Simões, P. I., A. Stow, W. Hödl, A. Amézquita, I. P. Farias & A. P. Lima, 2014. The value of including intraspecific measures of biodiversity in environmental impact surveys is highlighted by the Amazonian brilliant-thighed frog (Allobates femoralis). Tropical Conservation Science 7: 811–828.CrossRefGoogle Scholar
  48. Smith, M. A. & D. M. Green, 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28: 110–128.CrossRefGoogle Scholar
  49. Souza, S. M., M. T. Rodrigues & M. Cohn-Haft, 2013. Are Amazonia rivers biogeographic barriers for lizards? A study on the geographic variation of the spectacled lizard Leposoma osvaldoi Avila-Pires (Squamata, Gymnophthalmidae). Journal of Herpetology 47: 511–519.CrossRefGoogle Scholar
  50. Storfer, A., M. A. Murphy, S. F. Spear, R. Holderegger & L. P. Waits, 2010. Landscape genetics: where are we now? Molecular Ecology 19: 3496–3514.PubMedCrossRefGoogle Scholar
  51. Takahashi, Y., R. Tanaka, D. Yamamoto & S. Noriyuki, 2018. Balanced genetic diversity improves population fitness. Proceedings of the Royal Society B: Biological Sciences 285(1871): 20172045.PubMedCrossRefGoogle Scholar
  52. Tao, F., X. Wang, H. Zheng & S. Fang, 2005. Genetic structure and geographic subdivision of four populations of the Chinese giant salamander (Andrias davidianus). Zoological Research 26: 162–167.Google Scholar
  53. Togawa, R. C., M. M. Brigido, C. M. R. Santos, & M. T. S. Júnior, 2006. The use of the PHPH tool to assembly the gene sequences that are candidate to the biotic and abiotic stress in Musa acuminata. 35th Annual Meeting of the Brazilian Society of Biochemistry and Molecular Biology (SBBq). Águas de Lindóia, São Paulo, Brazil.Google Scholar
  54. Van Bocxlaer, I., S. P. Loader, K. Roelants, S. D. Biju, M. Menegon & F. Bossuyt, 2010. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327: 679–682.PubMedCrossRefGoogle Scholar
  55. Vásquez, D., C. Correa, L. Pastenes, R. Eduardo Palma & M. A. Méndez, 2013. Low phylogeographic structure of Rhinella arunco (Anura: Bufonidae), an endemic amphibian from the Chilean Mediterranean hotspot. Zoological Studies 52: 1–11.CrossRefGoogle Scholar
  56. Vitt, L. J. & J. P. Caldwell, 2014. Amphibians and Reptiles Herpetology, 4th ed. Elsevier Inc., New York NY.Google Scholar
  57. Waits, L. P., S. A. Cushman & S. F. Spear, 2015. Applications of Landscape Genetics to Connectivity Research in Terrestrial Animals. In Balkenhol, N., S. A. Cushman, A. Storfer & L. P. Waits (eds), Landscape Genetics: Concepts, Methods, Applications. Hoboken, Wiley Online Library: 199–214.CrossRefGoogle Scholar
  58. Wallace, A. R., 1854. On the monkeys of the Amazon. Journal of Natural History Series 2: 451–454.Google Scholar
  59. Xia, X., 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30: 1720–1728.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zeisset, I. & T. J. C. Beebee, 2008. Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity 101: 109–119.PubMedCrossRefGoogle Scholar
  61. Zhong, J., Z.-Q. Liu & Y.-Q. Wang, 2008. Phylogeography of the rice frog, Fejervarya multistriata (Anura: Ranidae), from China based on mtDNA D-loop sequences. Zoological Science 25: 811–820.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidade Federal de Mato Grosso, Pós-Graduação em Ecologia e Conservação da BiodiversidadeCuiabáBrazil
  2. 2.Universidade Federal de Mato Grosso, Núcleo de Estudos em Biodiversidade da Amazônia Mato-grossense – NEBAMSinopBrazil
  3. 3.Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da SaúdeCascavelBrazil
  4. 4.Universidade Estadual de Maringá, Pós-Graduação em Biologia ComparadaMaringáBrazil

Personalised recommendations