Spatial and temporal patterns of diatom assemblages, and their drivers, in four US streams: evidence from a long-term dataset

  • Camille A. FlindersEmail author
  • Renee L. Ragsdale
  • Joan Ikoma
  • William J. Arthurs
  • Jess Kidd
Primary Research Paper


Bioassessment to evaluate stream integrity and determine changes related to point-source discharges is typically focused in wadeable streams, with limited understanding of seasonal and annual variation. We used a multi-year (n = 13), multi-site (n = 5–7), seasonally (spring and fall) sampled dataset to evaluate spatial and temporal patterns in diatom assemblages relative to measured environmental variables, land use, and pulp and paper mill discharges in a wadeable stream (Codorus Creek, PA) and three non-wadeable rivers (Leaf River, MS; McKenzie and Willamette rivers, OR). Analysis of variance (ANOVA) and permutational ANOVA (PERMANOVA) showed that significant spatial differences in commonly used diatom biotic integrity/diagnostic metrics and assemblage structure were common in the wadeable stream, but rare in the non-wadeable rivers. Season-specific diatom patterns were observed in all streams regardless of size, but annual variation was more prevalent in the non-wadeable rivers. Environmental variables explained 35–58% of the variability in diatoms in the spring and 33–50% in the fall, with physical habitat characteristics associated with stream morphology and seasonality more important than those associated with anthropogenic inputs such as land use and point sources. Findings from this study highlight the value of spatially and temporally comprehensive datasets in understanding and interpreting diatom assemblage patterns.


Bioassessment Benthic diatom Non-wadeable stream Wadeable stream Seasonal variation Annual variation Pulp and paper mill effluent 



Assistance with periphyton sampling over the course of the study was provided by D. Brodhecker, F. Howell, A. O’Brien, R. Philbeck, N. Frum, J. Napack, G. Allen, C. Erickson, K. Ramage, J. Redmond, J. Thomas, and M. Cody. Samples were processed with assistance from J. Redmond. Y. Pan ensured that diatom identifications were accurate and reflected the most current taxonomic nomenclature. Discussions with M. Dubé, S. Holm, W. Landis, W. Minshall, J. Rodgers, and S. Missimer on study design and analysis were valuable. S. Courtenay provided guidance on data analyses and manuscript development. M. Harris prepared site maps, and S. Easthouse assisted with manuscript editing and formatting. Valuable insight and feedback provided by two anonymous reviewers improved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2019_4061_MOESM1_ESM.doc (510 kb)
Supplementary material 1 (DOC 510 kb)


  1. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.Google Scholar
  2. Association of Clean Water Administrators (ACWA), 2012. Use of Biological Assessment in State Water Programs: Focus on Nutrients. ACWA, Washington, DC.Google Scholar
  3. Bahls, L. L., 1993. Periphyton Bioassessment Methods for Montana Streams. Water Quality Bureau, Department of Health and Environmental Services, Helena, MT.Google Scholar
  4. Barbour M., J. Gerritsen, B. D. Snyder & J.B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. EPA 841-B-99-002, 3rd ed. U.S. Environmental Protection Agency, Office of Water, Washington, DCGoogle Scholar
  5. Biggs, B. J. F., V. I. Nikora & T. H. Snedler, 2005. Linking scales of flow variability to lotic ecosystem structure and function. River Research and Applications 21: 283–298.CrossRefGoogle Scholar
  6. Bothwell, M. L., 1992. Eutrophication of rivers by nutrients in treated kraft pulp mill effluent. Water Pollution Research Journal of Canada 27: 447–472.CrossRefGoogle Scholar
  7. Bothwell, M. L. & J. G. Stockner, 1980. Influence of secondarily treated kraft mill effluent on the accumulation rate of attached algae in experimental continuous-flow troughs. Canadian Journal of Fisheries and Aquatic Sciences 37: 248–254.CrossRefGoogle Scholar
  8. Chambers, P. A., A. R. Dale, G. J. Scrimgeour & M. L. Bothwell, 2000. Nutrient enrichment of northern rivers in response to pulp mill and municipal discharges. Journal of Aquatic Ecosystem Stress and Recovery 8: 53–66.CrossRefGoogle Scholar
  9. Chapman, D. V., 1996. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed. United Nations Educational, Scientific and Cultural Organization; World Health Organization; and United Nations Environment Programme, London: 626.CrossRefGoogle Scholar
  10. Clarke, K. R., R. N. Gorley, P. J. Somerfield & R. M. Warwick, 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed. PRIMER-E, Plymouth.Google Scholar
  11. Culp, J. M., K. J. Cash, N. E. Glozier & R. B. Brua, 2003. Effects of pulp mill effluent on benthic assemblages in mesocosms along the St. John River. Canada. Environmental Toxicology and Chemistry 22: 2916–2925.CrossRefGoogle Scholar
  12. Culp, J. M. & C. L. Podemski, 1996. Design and application of a novel stream microcosm system for assessing effluent impacts to large rivers. In Servos, M. R., K. R. Munkittrick, J. H. Carey & G. J. Van Der Kraak (eds), Environmental fate and effects of pulp and paper mill effluents. Delray Beach (FL), St. Lucie: 549–555.Google Scholar
  13. Culp, J. M., C. L. Podemski & K. J. Cash, 2000. Interactive effects of nutrients and contaminants from pulp mill effluents on riverine benthos. Journal of Aquatic Ecosystem Stress and Recovery 8: 67–75.CrossRefGoogle Scholar
  14. Davis, T. M., B. D. Vance & J. H. Rodgers Jr., 1988. Productivity responses of periphyton and phytoplankton to bleach-kraft mill effluent. Aquatic Toxicology 12: 83–106.CrossRefGoogle Scholar
  15. Dodds, W. K., C. T. Robinson, E. E. Gaiser, G. J. A. Hansen, H. Powell, J. M. Smith, N. B. Morse, S. L. Johnson, S. V. Gregory, T. Bell, T. K. Kratz & W. H. McDowell, 2012. Surprises and insights from long-term aquatic data sets and experiments. Bioscience 62: 709–721.CrossRefGoogle Scholar
  16. Dubé, M. G. & J. M. Culp, 1996. Growth responses of periphyton and chironomids exposed to biologically treated bleached-kraft pulp mill effluent. Environmental Toxicology and Chemistry 15: 2019–2027.CrossRefGoogle Scholar
  17. Duncan, S. W. & D. W. Blinn, 1989. Importance of physical variables on the seasonal dynamics of epilithic algae in a highly shaded canyon stream. Journal of Phycology 25: 455–461.CrossRefGoogle Scholar
  18. Ebina, J., T. Tsutsui & T. Shirai, 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research 17: 1721–1726. Scholar
  19. Environment Canada, 1992. Pulp and paper effluent regulations. Canada Gazette 126 (11, part II):1967–1997.Google Scholar
  20. Environment Canada, 2010. 2010 Pulp and Paper Environmental Effects Monitoring (EEM) Technical Guidance Document. Environment Canada, Ottawa: 490.Google Scholar
  21. Ferreira, R. C. F., M. A. S. Graça, S. Craveiro, L. M. A. Santos & J. M. Culp, 2002. Integrated environmental assessment of BKME discharged to a Mediterranean river. Water Quality Research Journal of Canada 37: 181–193.CrossRefGoogle Scholar
  22. Flinders, C. A., G. W. Minshall, T. J. Hall & J. H. Rodgers, 2009a. Spatial and temporal patterns of periphyton chlorophyll a related to pulp and paper mill discharges in four US receiving streams. Integrated Environmental Assessment and Management 5: 264–274.Google Scholar
  23. Flinders, C. A., R. L. Ragsdale & T. J. Hall, 2009b. Patterns of fish community structure in a long-term watershed-scale study to address the aquatic ecosystem effects of pulp and paper mill discharges in four US receiving streams. Integrated Environmental Assessment and Management 5: 224–238.Google Scholar
  24. Fore, L. S. & C. Grafe, 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshwater Biology 47: 2015–2037.CrossRefGoogle Scholar
  25. Franklin, J. F., 1988. Importance and justification of long-term studies in ecology. In Likens, G. E. (ed.), Long-term Studies in Ecology: Approaches and Alternatives. Springer, New York: 3–19.Google Scholar
  26. Hall, T. J., R. P. Fisher, J. L. Rodgers, G. W. Minshall, W. G. Landis, T. G. Kovacs, B. K. Firth, M. G. Dubé, T. L. Deardorff & D. L. Borton, 2009. A long-term multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four United States receiving waters: background and status. Integrated Environmental Assessment Management 5: 189–198.CrossRefGoogle Scholar
  27. Hall, T. J., R. K. Haley & L. E. LaFluer, 1991. Effects of biological treated bleached kraft mill effluent on cold water stream productivity in experimental stream channels. Environmental Toxicology and Chemistry 10: 1051–1060.CrossRefGoogle Scholar
  28. Jarvie, H. P., C. Neal, R. Smart, R. Owen, D. Fraser, I. Forbes & A. Wade, 2001. Use of continuous water quality records for hydrograph separation and to assess short-term variability and extremes in acidity and dissolved carbon dioxide for the River Dee, Scotland. The Science of the Total Environment 265: 85–98.CrossRefGoogle Scholar
  29. Johnson, B. L., W. B. Richardson & T. J. Naimo, 1995. Past, present, and future concepts in large river ecology. BioScience 45: 134–141.CrossRefGoogle Scholar
  30. Kovacs T.G., P. H. Martel, B. I. O’Conner, J. S. Gibbons & R. H. Voss, 2003. Effluent-related benefits derived from process and treatment changes implemented by the Canadian pulp and paper industry in the 1990s. In Stuthridge T. R., M. R. van den Heuvel, N. A. Marvin, A. H. Slade & J. Gifford (eds) Environmental impacts of pulp and paper waste streams: Proceedings of the Third International Conference on Environmental Fate and Effects of Pulp and Paper Effluents; 1997 Nov 9–13; Rotorua (NZ): 238–248Google Scholar
  31. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae, Teil 1. Naviculaceae. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  32. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae, Tiel 2. Bacillariophyceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg: 1–876.Google Scholar
  33. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae, Teil 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  34. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae, Teil 4. Achnanthaceae, kritsche Erganzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis, Tiel 1–4. Spektrum Akademischer Verlag, Heidelberg Germany.Google Scholar
  35. Landis, W. G. & J. F. Thomas, 2009. Regional risk assessment as a part of the long-term receiving water study. Integrated Environmental Assessment Management 5: 234–247.CrossRefGoogle Scholar
  36. Lane, C. L., J. E. Flotemersch, K. A. Blocksom & S. DeCelles, 2007. Effect of sampling method on diatom composition for use in monitoring and assessing large river condition. River Research and Applications 23: 1126–1146.CrossRefGoogle Scholar
  37. Lange, K., A. Liess, J. J. Piggott, C. R. Townsend & C. D. Matthaei, 2011. Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshwater Biology 56: 264–278.CrossRefGoogle Scholar
  38. Lange-Bertalot, H., 1979. Diatomeen-differentialarten anstelle von leitformen – Ein geeigneteres kriterium der gewasserbelastung. Archives Hydrobiologia Supplement 51: 393–427.Google Scholar
  39. Lauerwald, R., J. Hartmann, N. Moosdorf, S. Kempe & P. A. Raymond, 2013. What controls the spatial patterns of the riverine carbonate system? – A case study for North America. Chemical Geology 337–338: 114–127.CrossRefGoogle Scholar
  40. Leland, H. V., L. R. Brown & D. K. Mueller, 2001. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors. Freshwater Biology 46: 1139–1167.CrossRefGoogle Scholar
  41. Lindenmayer, D. B. & G. E. Likens, 2009. Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends in Ecology & Evolution 24: 482–486.CrossRefGoogle Scholar
  42. Lindenmayer, D. B., G. E. Likens, C. J. Krebs & R. J. Hobbs, 2010. Improved probability of detection of ecological ‘‘surprises’’. Proceedings of the National Academy of Sciences of the United States of America 107: 21957–21962.CrossRefGoogle Scholar
  43. Luxon, M. & W. G. Landis, 2005. Application of the relative risk model to the upper Willamette River and lower McKenzie River, Oregon. In Landis, W. G. (ed.), Regional Scale Ecological Risk Assessment Using the Relative Risk Model. CRC, Boca Raton, FL: 91–118.Google Scholar
  44. Martel, P.H., B. I. O’Connor, T.G. Kovacs, M. R. van den Heuvel, J. L. Parrott, M.E. McMaster, D. L. MacLatchy, G. J. Van Der Kraak & L. M. Hewitt, 2017. The relationship between organic loading and effects on fish reproduction for pulp mill effluents across Canada. Environmental Science & Technology 51: 3499–3507.CrossRefGoogle Scholar
  45. NCASI (National Council for Air and Stream Improvement), 2000. An Update of Procedures for the Measurement of Color in Pulp Mill Wastewaters. Technical Bulletin No. 803. National Council for Air and Stream Improvement, Inc.: Research Triangle Park NC.Google Scholar
  46. Obery, A. M. & W. G. Landis, 2002. A regional multiple stressor risk assessment of the Codorus Creek watershed applying the relative risk model. Human and Ecological Risk Assessment 8: 405–428.CrossRefGoogle Scholar
  47. Oelsner, G. P., L. A. Sprague, J. C. Murphy, R. E. Zuellig, H. M. Johnson, K. R. Ryberg, J. A. Falcone, E. G. Stets, A. V. Vecchia, M. L. Riskin, L. A. De Cicco, T. J. Mills & W. H. Farmer, 2017. Water-quality trends in the Nation’s Rivers and Streams, 1972-2012-Data Preparation, Statistical Methods, and Trend Results. U.S. Geological Survey Scientific Investigations Report 2017-5006.
  48. Pan, Y., R. M. Hughes, A. T. Herlihy & P. R. Kaufmann, 2012. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA. Hydrobiologia 684: 241–260.CrossRefGoogle Scholar
  49. Pandey, L. K., E. A. Bergey, J. Lyu, J. Park, S. Choi, H. Lee, S. Depuydt, Y.-T. Oh, S.-M. Lee & T. Han, 2017. The use of diatoms in ecotoxicology and bioassessment: insights, advances and challenges. Water Research 118: 39–58.CrossRefGoogle Scholar
  50. Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States. Volume 1. Monographs of the Academy of Natural Sciences of Philadelphia, no. 13. Academy of Natural Sciences of Philadelphia, Philadelphia, PA. 688 p.Google Scholar
  51. Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States. Volume 2. Monographs of the Academy of Natural Sciences of Philadelphia, no. 13. Academy of Natural Sciences of Philadelphia, Philadelphia, PA. 213 p.Google Scholar
  52. Podemski, C. L. & J. M. Culp, 1996. Nutrient and contaminant effects of bleached kraft mill effluent on benthic algae and insects of the Athabasca River. In Servos, M. R., K. R. Munkittrick, J. H. Carey & G. J. Van Der Kraak (eds), Environmental Fate and Effects of Pulp and Paper Mill Effluents. Delray Beach (FL), St. Lucie: 571–580.Google Scholar
  53. Porter, S. D., 2008. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program: U.S. Geological Survey Data Series 329,
  54. Potapova, M. & D. F. Charles, 2005. Choice of substrate in algae-based water-quality assessment. Journal of the North American Benthological Society 24: 415–427.CrossRefGoogle Scholar
  55. Potapova, M. & D. F. Charles, 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicator 7: 48–70.CrossRefGoogle Scholar
  56. Rosemond, A. D., P. J. Mulholland & S. H. Brawley, 2000. Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients, and herbivores. Canadian Journal of Fisheries and Aquatic Sciences 57: 66–75.CrossRefGoogle Scholar
  57. Reavie, E. D., T. M. Jicha, T. R. Angradi, D. W. Bolgrien & B. H. Hill, 2010. Algal assemblages for large river monitoring: comparison among biovolume, absolute and relative abundance metrics. Ecological Indicators 10: 167–177.CrossRefGoogle Scholar
  58. Scrimgeour, G. J. & P. A. Chambers, 2000. Cumulative effects of pulp mill and municipal effluents on epilithic biomass and nutrient limitation in a large northern river ecosystem. Canadian Journal of Fisheries and Aquatic Sciences 57: 1342–1354.CrossRefGoogle Scholar
  59. Snell, M. A., P. A. Barker, B. W. J. Surridge, C. McW. H. Benskin, N. Barber, S. M. Reaney, W. Tych, D. Mindham, A. R. G. Large, S. Burke & P. M. Haygarth, 2019. Strong and recurring seasonality revealed within stream diatom assemblages. Scientific Reports 9: Article number: 3313.Google Scholar
  60. Soininen, J. & P. Eloranta, 2004. Seasonal persistence and stability of diatom communities in rivers: are there habitat specific differences? European Journal of Phycology 39: 153–160.CrossRefGoogle Scholar
  61. Spaulding, S.A., I.W. Bishop, M.B. Edlund, S. Lee, P. Furey, E. Jovanovska & M. Potapova, 2019. Diatoms of North America.
  62. Stevenson, R. J., Y. Pan & H. van Dam, 2010. Assessing environmental conditions in rivers and streams with diatoms. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge: 57–85.CrossRefGoogle Scholar
  63. Tang, T., X. Jia, W. Jiang & Q. Cai, 2016. Multi-scale temporal dynamics of epilithic algal assemblages: evidence from a Chinese subtropical mountain river network. Hydrobiologia 770: 289–299.CrossRefGoogle Scholar
  64. Thomas, J., 2003. Integration of a relative risk multi-stressor risk assessment with the NCASI long-term receiving water studies to assess effluent effects at the watershed level, Leaf River, Mississippi. Technical Bulletin 867. National Council for Air and Stream Improvement: Research Triangle Park NC.Google Scholar
  65. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.CrossRefGoogle Scholar
  66. United States Environmental Protection Agency (US EPA), 1983. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020. USEPA Office of Research and Development, Washington DC.Google Scholar
  67. US EPA. 2006. Final report: Pulp and paper and paperboard detailed study. Office of Water, Washington, DC. EPA-821-R-06-016.Google Scholar
  68. US EPA, 2016. National Rivers and Streams Assessment 2008-2009: A Collaborative Survey, EPA/841/R-16/007. Office of Water and Office of Research and Development, Washington, DC.Google Scholar
  69. van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.CrossRefGoogle Scholar
  70. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  71. Wieczorek, M. E., & A. E. LaMotte, 2010. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: NLCD 2001 land use and land cover. U.S. Geological Survey Digital Data Series DDS-490-15. Accessed Jan 2018.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NCASIAnacortesUSA
  2. 2.Canadian Rivers Institute at the School of Environment, Resource and SustainabilityUniversity of WaterlooWaterlooCanada

Personalised recommendations