Advertisement

An examination of long-term ecological studies of rotifers: comparability of methods and results, insights into drivers of change and future research challenges

  • Linda MayEmail author
  • Robert L. Wallace
ROTIFERA XV

Abstract

Long-term research (LTR) can provide insights into rotifer ecology that are not possible from short-term studies or experiments. However, such studies have become rarer in recent years due to budgetary constraints. This review examined 5023 published articles about rotifers to determine the number, location and types of LTR studies that had been undertaken. Forty-four articles reported the results of studies that spanned more than 10 years. Of these, most focused on the impacts of climate change, acidification/liming and eutrophication/recovery on waterbodies and soils. However, some investigated ecosystem function, especially in relation to the effects of invasive species or the development of cost effective and comparable sampling techniques. The types of sites examined in these LTR studies included lakes and reservoirs, rivers, lagoons, seas and estuaries and soils, with the lengths of LTR records ranging from 10 to 82 years. Although their geographical locations ranged from North and South America to Asia, the Middle East and Europe, no studies were found from Africa, Australia or Antarctica. This review explores the role of LTR in quantifying the effects of environmental change and highlights gaps in existing knowledge.

Keywords

Waterbodies Soils Climate Change Acidification Eutrophication 

Notes

Acknowledgements

We thank Dr. E.J. Walsh for suggesting that we review this topic and two anonymous reviewers for their important comments and suggestions that greatly improved our manuscript.

References

  1. Andrew, T. E. & J. A. M. Andrew, 2005. Seasonality of rotifers and temperature in Lough Neagh, North Ireland. Hydrobiologia 546: 451–455.CrossRefGoogle Scholar
  2. Arndt, H., M. Krocker, B. Nixdorf & A. Kohler, 1993. Long-term annual and seasonal-changes of metazooplankton and protozooplankton in Lake Muggelsee (Berlin) – effects of eutrophication, grazing activities, and the impact of predation. International Revue Gesamten Hydrobiol 78: 379–402.CrossRefGoogle Scholar
  3. Arnott, S. E., N. Yan, W. Keller & K. Nicholls, 2001. The influence of drought-induced acidification on the recovery of plankton in Swan Lake Canada. Ecological Applications 11: 747–763.CrossRefGoogle Scholar
  4. Barley, S. C. & J. J. Meeuwig, 2017. The power and the pitfalls of large-scale, unreplicated natural experiments. Ecosystems 20: 331–339.CrossRefGoogle Scholar
  5. Beard, G. R., W. A. Scott & J. K. Adamson, 1999. The value of consistent methodology in long-term environmental monitoring. Environmental Monitoring and Assessment 54: 239–258.CrossRefGoogle Scholar
  6. Berner-Fankhauser, H., 1987. The influence of sampling strategy on the apparent population-dynamics of planktonic rotifers. Hydrobiologia 147: 181–188.CrossRefGoogle Scholar
  7. Berzins, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.CrossRefGoogle Scholar
  8. Blank, K., E. Loigu, R. Laugaste & J. Haberman, 2017. The ecological state of Lake Peipsi (Estonia/Russia): improvement, stabilization or deterioration? Proceedings of the Estonian Academy of Sciences 66: 18–28.CrossRefGoogle Scholar
  9. Bonecker, C. C., N. R. Simoes, C. V. Minte-Vera, F. A. Lansac-Toha, L. F. M. Velho & A. A. Agostinho, 2013. Temporal changes in zooplankton species diversity in response to environmental changes in an alluvial valley. Limnologica 43: 114–121.CrossRefGoogle Scholar
  10. Bottrell, H. H., Z. M. Gliwicz, E. Grigierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  11. Bowen, K. L. & W. J. S. Currie, 2017. Elevated zooplankton production in a eutrophic Lake Ontario embayment: Hamilton harbour 2002–2014. Aquatic Ecosystem Health & Management 20: 230–241.CrossRefGoogle Scholar
  12. Bowes, M. J., J. T. Smith, H. P. Jarvie & C. Neal, 2008. Modelling of phosphorus inputs to rivers from diffuse and point sources. Science of the Total Environment 395: 125–138.CrossRefGoogle Scholar
  13. Caceres, C. E., A. J. Tessier, M. A. Duffy & S. R. Hall, 2014. Disease in freshwater zooplankton: what have we learned and where are we going? Journal of Plankton Research 36: 326–333.CrossRefGoogle Scholar
  14. Carvalho, L., C. Miller, B. M. Spears, I. D. M. Gunn, H. Bennion, A. Kirika & L. May, 2012. Water quality of Loch Leven: responses to enrichment, restoration and climate change. Hydrobiologia 681: 35–47.CrossRefGoogle Scholar
  15. Chick, J. H., A. P. Levchuk, K. A. Medley & J. H. Havel, 2010. Underestimation of rotifer abundance a much greater problem than previously appreciated. Limnology and Oceanography Methods 8: 79–87.CrossRefGoogle Scholar
  16. Darwall, W., V. Bremerich, A. De Wever, A. I. Dell, J. Freyhof, M. O. Gessner, H.-P. Grossart, I. Harrison, K. Irvine, S. C. Jähnig, J. M. Jeschke, J. J. Lee, C. Lu, A. M. Lewandowska, M. T. Monaghan, J. C. Nejstgaard, H. Patricio, A. Schmidt-Kloiber, S. N. Stuart, M. Thieme, K. Tockner, E. Turak & O. Weyl, 2018. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 1015–1022.CrossRefGoogle Scholar
  17. De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologia 23: 121–125.CrossRefGoogle Scholar
  18. De Meester, L., J. Vanoverbeke, L. J. Kilsdonk & M. C. Urban, 2016. Evolving perspectives on monopolization and priority effects. Trends in Ecology and Evolution 31: 136–146.CrossRefGoogle Scholar
  19. de Paggi, S. B. J., M. Devercelli & F. R. Molina, 2014. Zooplankton and their driving factors in a large subtropical river during low water periods. Fundamentals of Applied Limnology 184: 125–139.CrossRefGoogle Scholar
  20. Deksne, R., 2011. Influence of wastewater on zooplankton communities in the Daugava River upstream and downstream of Daugavpils over the last 50 years. Knowledge and Management of Aquatic Ecosystems.  https://doi.org/10.1051/kmae/2011050.Google Scholar
  21. Delpy, F., D. Thibault-Botha & F. Carlotti, 2011. Modification of the Berre Lagoon Pelagic Ecosystem Since the 1980s. Springer, Dordrecht.Google Scholar
  22. Devetter, M. & J. Frouz, 2011. Primary succession of soil rotifers in clays of brown coal post-mining dumps. International Review of Hydrobiology 96: 164–174.CrossRefGoogle Scholar
  23. Dokulil, M. T. & A. Herzig, 2009. An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria. Aquatic Ecology 43: 715–725.CrossRefGoogle Scholar
  24. Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.CrossRefGoogle Scholar
  25. Duffy, M. A., C. E. Brassil, S. R. Hall, A. J. Tessier, C. E. Caceres & J. K. Conner, 2008. Parasite-mediated disruptive selection in a natural Daphnia population. BMC Evolutionary Biology.  https://doi.org/10.1186/1471-2148-8-80.Google Scholar
  26. Edmondson, W. T., 1991. The uses of ecology: Lake Washington and beyond. University of Washington Press, Seattle.Google Scholar
  27. Feike, M. & R. Heerkloss, 2008. Long-term stability of the seasonal succession of different zooplankton species in a brackish water lagoon (southern Baltic Sea). Hydrobiologia 611: 17–28.CrossRefGoogle Scholar
  28. Fermani, P., N. Diovisalvi, A. Torremorell, L. Lagomarsino, H. E. Zagarese & F. Unrein, 2013. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714: 115–130.CrossRefGoogle Scholar
  29. Folster, J., R. K. Johnson, M. N. Futter & A. Wilander, 2014. The Swedish monitoring of surface waters: 50 years of adaptive monitoring. Ambio 43: 3–18.CrossRefGoogle Scholar
  30. Fontaneto, D., A. M. Barbosa, H. Segers & M. Pautasso, 2012. The ‘rotiferologist’ effect and other global correlates of species richness in monogonont rotifers. Ecography 35: 174–182.CrossRefGoogle Scholar
  31. Geelen, J. F. M., 1955. The Plankton of the Lakes, Vol. 38. Municipal Waterworks, Amsterdam.Google Scholar
  32. Gophen, M., 2005. Seasonal rotifer dynamics in the long-term (1969–2002) record from Lake Kinneret (Israel). Hydrobiologia 546: 443–450.CrossRefGoogle Scholar
  33. Gulati, R. D., A. L. Oomswilms, O. F. R. Vantongeren, G. Postema & K. Siewertsen, 1992. The dynamics and role of limnetic zooplankton in Loosdrecht Lakes (the Netherlands). Hydrobiologia 233: 69–86.CrossRefGoogle Scholar
  34. Haase, P., J. D. Tonkin, S. Stoll, B. Burkhard, M. Frenzel, I. R. Geijzendorffer, C. Hauser, S. Klotz, I. Kuhn, W. H. McDowell, M. Mirtl, F. Muller, M. Musche, J. Penner, S. Zacharias & D. S. Schmeller, 2018. The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment 613–614: 1376–1384.CrossRefGoogle Scholar
  35. Haberman, J. & M. Haldna, 2017. How are spring zooplankton and autumn zooplankton influenced by water temperature in a polymictic lake? Proceedings of the Estonian Academy of Sciences 66: 264–278.CrossRefGoogle Scholar
  36. Haberman, J. & R. Laugaste, 2003. On characteristics reflecting the trophic state of large and shallow Estonian lakes (L. Peipsi, L. Vortsjarv). Hydrobiologia 506: 737–744.CrossRefGoogle Scholar
  37. Halvorsen, G., B. K. Dervo & K. Papinska, 2004. Zooplankton in Lake Atnsjoen 1985–1997. Hydrobiologia 521: 149–175.CrossRefGoogle Scholar
  38. Hamilton, D., C. Carey, L. Arvola, P. Arzberger, C. Brewer, J. Cole, E. Gaiser, P. Hanson, B. Ibelings, E. Jennings, T. Kratz, F.-P. Lin, C. McBride, D. de Motta Marques, K. Muraoka, A. Nishri, B. Qin, J. Read, K. Rose, E. Ryder, K. Weathers, G. Zhu, D. Trolle & J. Brookes, 2015. A global lake ecological observatory network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models. Inland Waters 5: 49–56.CrossRefGoogle Scholar
  39. Hampton, S. E., 2005. Increased niche differentiation between two Conochilus species over 33 years of climate change and food web alteration. Limnology and Oceanography 50: 421–426.CrossRefGoogle Scholar
  40. Hampton, S. E., 2013. Understanding lakes near and far. Science 342: 815–816.CrossRefGoogle Scholar
  41. Hampton, S. E., D. K. Gray, L. R. Izmest’eva, M. V. Moore & T. Ozersky, 2014. The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in lake Baikal, Siberia. PLoS ONE.  https://doi.org/10.1371/journal.pone.0088920.Google Scholar
  42. Hampton, S. E., M. D. Scheuerell, M. J. Church & J. M. Melack, 2018. Long-term perspectives in aquatic research. Limnology and Oceanography 64: S2–S10.Google Scholar
  43. Hanel, L., 2001. Succession of soil nematodes in pine forests on coal-mining sands near Cottbus, Germany. Applied Soil Ecology 16: 23–34.CrossRefGoogle Scholar
  44. Hébert, M.-P., B. E. Beisner & R. Maranger, 2017. Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. Journal of Plankton Research 39: 3–12.CrossRefGoogle Scholar
  45. Herzig, A., 1987. The analysis of planktonic rotifer populations – a plea for long-term investigations. Hydrobiologia 147: 163–180.CrossRefGoogle Scholar
  46. Hobbie, J. E., S. R. Carpenter, N. B. Grimm, J. R. Gosz & T. R. Seastedt, 2003. The US long term ecological research program. BioScience 53: 21–32.CrossRefGoogle Scholar
  47. Horn, H. & W. Horn, 2008. Bottom-up or top-down – how is the autotrophic picoplankton mainly controlled? Results of long-term investigations from two drinking water reservoirs of different trophic state. Limnologica 38: 302–312.CrossRefGoogle Scholar
  48. Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54: 187–211.CrossRefGoogle Scholar
  49. Johansson, S., S. Hansson & O. Arayanunez, 1993. Temporal and spatial variation of coastal zooplankton in the Baltic Sea. Ecography 16: 167–173.CrossRefGoogle Scholar
  50. Koksvik, J. I., H. Reinertsen & J. Koksvik, 2009. Plankton development in Lake Jonsvatn, Norway, after introduction of Mysis relicta: a long-term study. Aquatic Biology 5: 293–304.CrossRefGoogle Scholar
  51. Lehtovaara, A., L. Arvola, J. Keskitalo, M. Olin, M. Rask, K. Salonen, J. Sarvala, T. Tulonen & J. Vuorenmaa, 2014. Responses of zooplankton to long-term environmental changes in a small boreal lake. Boreal Environmental Research 19: 97–111.Google Scholar
  52. Likens, G. & D. Lindenmayer, 2018. Effective ecological monitoring, 2nd ed. CSIRO Publishing, Clayton South: 210.Google Scholar
  53. Lindenmayer, D. B. & G. E. Likens, 2009. Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends in Ecology and Evolution 24: 482–486.CrossRefGoogle Scholar
  54. Lindenmayer, D. B. & G. E. Likens, 2010. The science and application of ecological monitoring. Biological Conservation 143: 1317–1328.CrossRefGoogle Scholar
  55. Lovett, G. M., D. A. Burns, C. T. Driscoll, J. C. Jenkins, M. J. Mitchell, L. Rustad, J. B. Shanley, G. E. Likens & R. Haeuber, 2007. Who needs environmental monitoring. Frontiers in Ecology and the Environment 5: 253–260.CrossRefGoogle Scholar
  56. Low, E. W., E. Clews, P. A. Todd, Y. C. Tai & P. K. L. Ng, 2010. Top-down control of phytoplankton by zooplankton in tropical reservoirs in Singapore? Raffles Bulletin of Zoology 58: 311–322.Google Scholar
  57. Maass, M., P. Balvanera, P. Bourgeron, M. Equihua, J. Baudry, J. Dick, M. Forsius, L. Halada, K. Krauze, M. Nakaoka, D. E. Orenstein, T. W. Parr, C. L. Redman, R. Rozzi, M. Santos-Reis, A. M. Swemmer & A. Vădineanu, 2016. Changes in biodiversity and trade-offs among ecosystem services, stakeholders, and components of well-being: the contribution of the international long-term ecological research network (ILTER) to programme on ecosystem change and society (PECS). Ecology and Society 21: 31.CrossRefGoogle Scholar
  58. Maberly, S. C. & J. A. Elliott, 2012. Insights from long-term studies in the Windermere catchment: external stressors, internal interactions and the structure and function of lake ecosystems. Freshwater Biology 57: 233–243.CrossRefGoogle Scholar
  59. May, L., 1983. Rotifer occurrence in relation to water temperature in Loch Leven, Scotland. Hydrobiologia 104: 311–315.CrossRefGoogle Scholar
  60. May, L., 1987. Effect of incubation temperature on the hatching of rotifer resting eggs collected from sediments. Hydrobiologia 147: 335–338.CrossRefGoogle Scholar
  61. May, L. & B. M. Spears, 2012. Managing ecosystem services at Loch Leven, Scotland, UK: actions, impacts and unintended consequences. Hydrobiologia 681: 117–130.CrossRefGoogle Scholar
  62. May, L., A. E. Bailey-Watts & A. Kirika, 2001. The relationship between Trichocerca pusilla (Jennings), Aulacoseira spp. and water temperature in Loch Leven, Scotland, UK. Hydrobiologia 446: 29–34.CrossRefGoogle Scholar
  63. Miracle, M. R., 1977. Epidemiology in rotifers. Archiv für Hydrobiologie: Ergebnisse der Limnologie 8: 138–141.Google Scholar
  64. Mirt, M., T. B. E. I. Djukic, M. Forsius, H. Haubold, W. Hugo, J. Jourdan, D. Lindenmayer, W. H. McDowell, H. Muraoka, D. E. Orenstein, J. C. Pauw, J. Peterseil, H. Shibata, C. Wohner, X. Yu & P. Haase, 2018. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Science of the Total Environment 626: 1439–1462.CrossRefGoogle Scholar
  65. Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.CrossRefGoogle Scholar
  66. Onandia, G., J. D. Dias & M. R. Miracle, 2015. Zooplankton grazing on natural algae and bacteria under hypertrophic conditions. Limnetica 34: 541–560.Google Scholar
  67. Orsini, L., K. Schwenk, L. De Meester, J. K. Colbourne, M. E. Pfrender & L. J. Weider, 2013. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends in Ecology and Evolution 28: 274–282.CrossRefGoogle Scholar
  68. Ozkan, K., E. Jeppesen, T. A. Davidson, M. Sondergaard, T. L. Lauridsen, R. Bjerring, L. S. Johansson & J. C. Svenning, 2014. Cross-taxon congruence in lake plankton largely independent of environmental gradients. Ecology 95: 2778–2788.CrossRefGoogle Scholar
  69. Ricci, C. & F. Perletti, 2006. Starve and survive: stress tolerance and life-history traits of a bdelloid rotifer. Functional Ecology 20: 340–346.CrossRefGoogle Scholar
  70. Rico-Martínez, R., M. A. Arzate-Cárdenas, D. Robles-Vargas, I. A. Pérez-Legaspi, J. Alvarado-Flores & G. E. Santos-Medrano, 2016. Rotifers as models in toxicity screening of chemicals and environmental samples. In Larramendy, M. L. & S. Soloneski (eds), Invertebrates – Experimental Models in Toxicity Screening. Intech, Rijeka: 57–99.Google Scholar
  71. Rivas, J. A., J. E. Mohl, R. S. Van Pelt, M. Y. Leung, R. L. Wallace, T. E. Gill & E. J. Walsh, 2018. Evidence for regional aeolian transport of freshwater micrometazoans in arid regions. Limnology and Oceanography Letters 3: 320–330.CrossRefGoogle Scholar
  72. Rivas, J. A., T. Schröder, T. E. Gill, R. L. Wallace & E. J. Walsh, 2019. Anemochory of diapausing stages of microinvertebrates in North American drylands. Freshwater Biology 64(7): 1303.CrossRefGoogle Scholar
  73. Roberts, K. A., 1991. Field Monitoring: Confessions of an Addict. In Goldsmith, F. B. (ed.), Monitoring for Conservation and Ecology. Chapman & Hall, London: 179–212.CrossRefGoogle Scholar
  74. Rose, K. C., K. C. Weathers, A. L. Hetherington & D. P. Hamilton, 2018. Insights from the global lake ecological observatory network (GLEON). Inland Waters 6: 476–482.CrossRefGoogle Scholar
  75. Rublee, P. A. & N. D. Bettez, 2001. Lake characteristics influence recovery of microplankton in arctic LTER lakes following experimental fertilization. Hydrobiologia 446: 229–232.CrossRefGoogle Scholar
  76. Rusak, J. A. & P. K. Montz, 2009. Sampling requirements and the implications of reduced sampling effort for the estimation of annual zooplankton population and community dynamics in north temperate lakes. Limnology and Oceanography Methods 7: 535–544.CrossRefGoogle Scholar
  77. Ruttner-Kolisko, A., 1977. The effect of the microsporid Plistophora asperospora on Conochilus unicornis in Lunzer Unterseee (LUS). Archiv für Hydrobiologie: Ergebnisse der Limnologie 8: 135–137.Google Scholar
  78. Shao, Z. J., P. Xie & Z. G. Yan, 2001. Long-term changes of planktonic rotifers in a subtropical Chinese lake dominated by filter-feeding fishes. Freshwater Biology 46: 973–986.CrossRefGoogle Scholar
  79. Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24: 201–207.CrossRefGoogle Scholar
  80. Smith, H. A., J. Ejsmont-Karabin, T. M. Hess & R. L. Wallace, 2009. Paradox of Planktonic Rotifers: Similar Structure but Unique Trajectories in Communities of the Great Masurian Lakes (Poland). In Jones, J. & J. Faaborg (eds), International Association of Theoretical and Applied Limnology. International Association of Theoretical and Applied Limnology Proceedings, Vol. 30. E Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 951–956.Google Scholar
  81. Snell, T. W. & H. S. Marcial, 2017. Using Rotifers to Diagnosis the Ecological Impacts of Toxicants. In Hagiwara, A. & T. Yoshingaga (eds), Rotifers: Aquaculture, Ecology, Gerontology, and Ecotoxicology. Springer Nature, Singapore: 129–147.CrossRefGoogle Scholar
  82. Sommaruga, R., 2015. When glaciers and ice sheets melt: consequences for planktonic organisms. Journal of Plankton Research 37: 509–518.CrossRefGoogle Scholar
  83. Stenson, J. A. E. & J. E. Svensson, 1995. Changes of planktivore fauna and development of zooplankton after liming of the acidified Lake Gardsjon. Water Air and Soil Pollution 85: 979–984.CrossRefGoogle Scholar
  84. Suikkanen, S., S. Pulina, J. Engstrom-Ost, M. Lehtiniemi, S. Lehtinen & A. Brutemark, 2013. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE.  https://doi.org/10.1371/journal.pone.0066475.Google Scholar
  85. Thackeray, S. J., 2012. Mismatch revisited: what is trophic mismatching from the perspective of the plankton? Journal of Plankton Research 34: 1001–1010.CrossRefGoogle Scholar
  86. Tirok, K. & U. Gaedke, 2006. Spring weather determines the relative importance of ciliates, rotifers and crustaceans for the initiation of the clear-water phase in a large, deep lake. Journal of Plankton Research 28: 361–373.CrossRefGoogle Scholar
  87. Vanderbilt, K. & E. Gaiser, 2017. The international long term ecological research network: a platform for collaboration. Ecosphere 8: e01697.CrossRefGoogle Scholar
  88. Vasseur, D. A. & U. Gaedke, 2007. Spectral analysis unmasks synchronous and compensatory dynamics in plankton communities. Ecology 88: 2058–2071.CrossRefGoogle Scholar
  89. Verpoorter, C., T. Kutser, D. A. Seekell & L. J. Tranvik, 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters 41: 6396–6402.CrossRefGoogle Scholar
  90. Viitasalo, M., I. Vuorinen & S. Saesmaa, 1995. Mesozooplankton dynamics in the northern Baltic Sea – implications of variations in hydrography and climate. Journal of Plankton Research 17: 1857–1878.CrossRefGoogle Scholar
  91. Voutilainen, A. & L. Arvola, 2017. SOM clustering of 21-year data of a small pristine boreal lake. Knowledge and Management of Aquatic Ecosystems.  https://doi.org/10.1051/kmae/2017027.Google Scholar
  92. Voutilainen, A., M. Rahkola-Sorsa, J. Parviainen, M. J. Huttunen & M. Viljanen, 2012. Analysing a large dataset on long-term monitoring of water quality and plankton with the SOM clustering. Knowledge and Management of Aquatic Ecosystems.  https://doi.org/10.1051/kmae/2012021.Google Scholar
  93. Wagner, C. & R. Adrian, 2011. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshwater Biology 56: 1949–1961.CrossRefGoogle Scholar
  94. Walsh, E. J., H. A. Smith & R. L. Wallace, 2014. Rotifers of temporary waters. International Review of Hydrobiology 99: 3–19.CrossRefGoogle Scholar
  95. Weglenska, T., J. EjsmontKarabin & J. I. Rybak, 1997. Biotic interactions of the zooplankton community of a shallow, humic lake. Hydrobiologia 342: 185–195.CrossRefGoogle Scholar
  96. Winder, M. & D. E. Schindler, 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.CrossRefGoogle Scholar
  97. Winder, M. & A. D. Jassby, 2011. Shifts in zooplankton community structure: implications for food web processes in the upper San Francisco Estuary. Estuaries Coasts 34: 675–690.CrossRefGoogle Scholar
  98. Wissel, B. & J. Benndorf, 1998. Contrasting effects of the invertebrate predator Chaoborus obscuripes and planktivorous fish on plankton communities of a long term biomanipulation experiment. Archive für Hydrobiologie 143: 129–146.CrossRefGoogle Scholar
  99. Yang, Y. F., X. F. Huang, J. K. Liu & N. Z. Jiao, 2005. Effects of fish stocking on the zooplankton community structure in a shallow lake in China. Fisheries Management and Ecology 12: 81–89.CrossRefGoogle Scholar
  100. Zuykova, E. I., N. G. Sheveleva & T. D. Evstigneeva, 2009. The seasonal and interannual dynamics of zooplankton in Lake Teletskoye. Inland Water Biol 2: 234–246.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Ecology & Hydrology, Bush EstateMidlothianUK
  2. 2.Ripon CollegeRiponUSA

Personalised recommendations