Advertisement

Hydrobiologia

, Volume 846, Issue 1, pp 123–133 | Cite as

The cross-shore distribution of epibenthic predators and its effect on zonation of intertidal macrobenthos: a case study in the river Scheldt

  • Frank Van de MeutterEmail author
  • Olja Bezdenjesnji
  • Nico De Regge
  • Jietse Maes
  • Jan Soors
  • Jeroen Speybroeck
  • Erika Van den Bergh
  • Gunther Van Ryckegem
Primary Research Paper

Abstract

Available research is inconclusive on how circatidal habitat use and cross-shore distribution of aquatic epibenthic predators may affect the vertical zonation of infauna in muddy, soft-bottom substrates in estuaries. We placed fyke traps at different heights on the intertidal mudflat to assess the circatidal density of epibenthic predators. Infauna was sampled across the same tidal gradient. The abundance of epibenthic predators in the fykes decreased with elevation (decreasing inundation time), yet for the shrimp Palaemon longirostris abundance did not change with elevation in autumn. When corrected for inundation time, predator density was equal over the tidal range or higher on the high mudflat in some instances, indicating that predators evenly distributed over the mudflat or moved to the highest part during a high tide. The density of epibenthic predators did not correlate with the density of infauna, whereas the latter did show a close relationship with sediment characteristics. Our data suggest epibenthic predator density does not shape the present distribution of infauna across the tidal gradient on the oligohaline mudflats in the Scheldt.

Keywords

Oligochaeta Tidal migration Crangon Palaemon Pomatoschistus Bottom-up 

Notes

Acknowledgements

We wish to thank the Maritime access department for funding the monitoring of benthos. We want to thank all people at INBO and students who assisted with the sampling and sample processing: Dimitri Buerms, De Beukelaer Joram, Lefranc Charles, Soors Jan, Swerts Edith, Terrie Thomas and Van den Broeck Julie.

References

  1. Armendáriz, L. C., A. Rodrigues Capítulo & E. S. Ambrosio, 2011. Relationships between the spatial distribution of oligochaetes (Annelida, Clitellata) and environmental variables in a temperate estuary system of South America (Río de la Plata, Argentina). New Zealand Journal of Marine and Freshwater Research 45: 263–279.CrossRefGoogle Scholar
  2. Ashelby, C. W., S. De Grave & M. L. Johnson, 2016. Diet analysis indicates seasonal fluctuation in trophic overlap and separation between a native and an introduced shrimp species (Decapoda, Palaemonidae) in the tidal river Thames (U.K.). Crustaceana 89: 701–719.CrossRefGoogle Scholar
  3. Barnes, R. S. K. & M. K. S. Barnes, 2012. Shore height and differentials between macrobenthic assemblages in vegetated and unvegetated areas of an intertidal sandflat. Estuarine, Coastal and Shelf Science 106: 112–120.CrossRefGoogle Scholar
  4. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  5. Bertness, M. D., 1981. Predation, physical stress, and the organization of a tropical rocky intertidal hermit crab community. Ecology 62: 411–425.CrossRefGoogle Scholar
  6. Campos, J., & H. Van Der Veer, 2008. Autecology Of Crangon Crangon (L.) With An Emphasis On Latitudinal Trends. [available on internet at http://www.crcnetbase.com/doi/abs/10.1201/9781420065756.ch3].
  7. Connell, J. H., 1961a. The influence of interspecific competition and other factors on the distribution of the barnacle Chtalamus stellatus. Ecology 42: 710–723.CrossRefGoogle Scholar
  8. Connell, J. H., 1961b. Effects of competition, predation by thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs 31: 61–104.CrossRefGoogle Scholar
  9. Connell, J. H., 1972. Community interactions on marine rocky intertidal shores. Annual Review of Ecology and Systematics 3: 169–192.CrossRefGoogle Scholar
  10. Cox, T. J. S., T. Maris, K. Soetaert, D. J. Conley, S. Van Damme, P. Meire, J. J. Middelburg, M. Vos & E. Struyf, 2009. A macro-tidal freshwater ecosystem recovering from hypereutrophication: the Schelde case study. Biogeosciences 6: 2935–2948.CrossRefGoogle Scholar
  11. del Norte Campos, A. G. & A. Temming, 1994. Daily activity, feeding and rations in gobies and brown shrimp in the northern Wadden Sea. Marine Ecology Progress Series 115: 41–54.CrossRefGoogle Scholar
  12. Fretwell, S. D., 1972. Populations in a Seasonal Environment. Monographs in Population Biology, 5th ed. Princeton University Press, Princeton.Google Scholar
  13. Giere, O., 2006. Ecology and biology of marine Oligochaeta—an inventory rather than another review. Hydrobiologia 564: 103–116.CrossRefGoogle Scholar
  14. Giraldes, B. W., P. A. Coelho Filho & D. M. Smyth, 2015. Decapod assemblages in subtidal and intertidal zones-Importance of scuba diving as a survey technique in tropical reefs, Brazil. Global Ecology and Conservation 3: 163–175.CrossRefGoogle Scholar
  15. Hagerman, L. & J. Ostrup, 1980. Seasonal and Diel Activity Variations in the Shrimp Palaemon adspersus from a Brackish, Non- Tidal Area. Marine Ecology Progress Series 2: 329–335.CrossRefGoogle Scholar
  16. Hampel, H. & A. Cattrijsse, 2004. Temporal variation in feeding rhythms in a tidal marsh population of the common goby. Aquatic Sciences 66: 315–326.CrossRefGoogle Scholar
  17. Hoffman, J. A., J. Katz & M. D. Bertness, 1984. Fiddler crab deposit-feeding and meiofaunal abundance in salt marsh habitats. Journal of Experimental Marine Biology and Ecology 82: 161–174.CrossRefGoogle Scholar
  18. Lesutiene, J., Z. R. Gasiunaite, R. Strikaityte & R. Žiliene, 2014. Trophic position and basal energy sources of the invasive prawn Palaemon elegans in the exposed littoral of the SE Baltic Sea. Aquatic Invasions 9: 37–45.CrossRefGoogle Scholar
  19. Levinton, J. S., 1995. Marine biology: function, biodiversity, ecology. Oxford University Press, New York.Google Scholar
  20. Maes, J., L. de Brabandere, F. Ollevier & J. Mees, 2003. The diet and consumption of dominant fish species in the upper Scheldt estuary, Belgium. Journal of the Marine Biological Association of the UK 83: 603–612.CrossRefGoogle Scholar
  21. Meire, P., T. Ysebaert, S. Van Damme, E. Van Den Bergh, T. Maris & E. Struyf, 2005. The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540: 1–11.CrossRefGoogle Scholar
  22. Mialet, B., J. Gouzou, F. Azémar, T. Maris, C. Sossou, N. Toumi, S. Van Damme, P. Meire & M. Tackx, 2011. Response of zooplankton to improving water quality in the Scheldt estuary (Belgium). Estuarine, Coastal and Shelf Science 93: 47–57.CrossRefGoogle Scholar
  23. Naylor, E. & S. Rejeki, 1996. Tidal migrations and rhythmic behaviour of sandbeach Crustacea. Revista Chilena de Historia Natural 69: 475–484.Google Scholar
  24. Oh, C. W., R. G. Hartnoll & R. D. M. Nash, 2001. Feeding ecology of the common shrimp Crangon crangon in Port Erin Bay, Isle of Man, Irish Sea. Marine Ecology Progress Series 214: 211–223.CrossRefGoogle Scholar
  25. Ólafsson, E. B., C. H. Peterson & W. G. Ambrose Jr., 1994. Does recruitment limitation structure populations and communities of macro-invertebrates in marine soft-sediments: the relative significance of pre- and post-settlement processes. Oceanography and Marine Biology: an Annual Review 32: 65–109.Google Scholar
  26. Paavo, B. L., D. Ham, S. Goerlitz & P. K. Probert, 2012. How does tidal submersion time affect macroinvertebrate community patterns on a temperate sheltered sandflat? Marine and Freshwater Research 63: 68.CrossRefGoogle Scholar
  27. Paine, R. T., 1966. Food web complexity and species diversity. The American Naturalist 100: 65–75.CrossRefGoogle Scholar
  28. Perez, K. O., R. L. Carlson, M. J. Shulman & J. C. Ellis, 2009. Why are intertidal snails rare in the subtidal? Predation, growth and the vertical distribution of Littorina littorea (L) in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology 369: 79–86.CrossRefGoogle Scholar
  29. R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, [available on internet at https://www.r-project.org/].
  30. Rodrigues, A. M., S. Meireles, T. Pereira, A. Gama & V. Quintino, 2013. Spatial patterns of benthic macroinvertebrates in intertidal areas of a southern European estuary: the Tagus, Portugal. Hydrobiologia 555: 113.Google Scholar
  31. Salgado, J. P., H. N. Cabral & M. J. Costa, 2004. Feeding ecology of the gobies Pomatoschistus minutus (Pallas, 1770) and Pomatoschistus microps (Krøyer, 1838) in the upper Tagus estuary, Portugal. Scientia Marina 68: 425–434.CrossRefGoogle Scholar
  32. Salgado, J. P., H. N. Cabral & M. J. Costa, 2007. Spatial and temporal distribution patterns of the macrozoobenthos assemblage in the salt marshes of Tejo estuary (Portugal). Hydrobiologia 587: 225–239.CrossRefGoogle Scholar
  33. Seys, J., M. Vincx, & P. Meire, 1999a. Macrobenthos van de Zeeschelde, met bijzonder aandacht voor het voorkomen en de rol van Oligochaeta.Google Scholar
  34. Seys, J., M. Vincx & P. Meire, 1999b. Spatial distribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Schelde estuary (Belgium). Hydrobiologia 406: 119–132.CrossRefGoogle Scholar
  35. Speybroeck, J., N. De Regge, J. Soors, T. Terrie, G. Van Ryckegem, A. Van Braeckel, & E. Van den Bergh, 2014. Monitoring van het macrobenthos van de Zeeschelde en haar getij-onderhevige zijrivieren (1999–2010). Beschrijvend overzicht van historische gegevens (1999, 2002, 2005) en eerste cyclus van nieuwe strategie (2008, 2009, 2010). Rapporten van het Instituut v. Brussel.Google Scholar
  36. Thrush, S. F., 1999. Complex role of predators in structuring soft-sediment macrobenthic communities: implications of changes in spatial scale for experimental studies. Australian Journal of Ecology 24: 344–354.CrossRefGoogle Scholar
  37. Van den Bergh, E., T. Ysebaert & P. Meire, 2005. Water bird communities in the Lower Zeeschelde: long-term changes near an expanding harbour 9 10. Hydrobiologia 540: 237–258.CrossRefGoogle Scholar
  38. van Haaren, T. & J. Soors, 2013. Aquatic Oligochaeta of the Netherlands and Belgium. KNNV Uitgeverij, Zeist.CrossRefGoogle Scholar
  39. Van Ryckegem, G., A. Van Braeckel, R. Elsen, J. Speybroeck, B. Vandevoorde, W. Mertens, J. Breine, G. Spanoghe, D. Buerms, J. De Beukelaer, N. De Regge, K. Hessel, J. Soors, T. Terrie, F. Van Lierop, & E. Van Den Bergh, 2017. MONEOS—Geïntegreerd datarapport INBO: Toestand Zeeschelde 2016 Monitoringsoverzicht en 1ste lijnsrapportage Geomorfologie, diversiteit Habitats en diversiteit Soorten. Rapporten van het Instituut voor Natuur- en Bosonderzoek 2017 (37). Instituut voor Natuur- en Bosonderzoek, Brussel.Google Scholar
  40. Virnstein, R. W., 1977. The importance of predation by crabs and fishes on benthic infauna in chesapeake bay. Ecology 58: 1200–1217.CrossRefGoogle Scholar
  41. Wolcott, T. G., 1973. Physiological ecology and intertidal zonation in limpets (Acmaea): a critical look at “limiting factors”. Biological Bulletin 145: 389–422.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Institute for Nature and Forest (INBO)BrusselsBelgium
  2. 2.Katholieke Universiteit Leuven (KUL)LeuvenBelgium

Personalised recommendations