Advertisement

Interactions among anthropogenic effects on aquatic food webs

  • Katya E. KovalenkoEmail author
Review Paper

Abstract

Food web structure is the underlying framework of ecological communities and human systems and it is closely related to ecosystem resilience. Our ability to predict food web changes in response to anthropogenic stress is dependent on our understanding of the interactions among food web-stabilizing mechanisms, making the study of these interactions a critical need for future research in aquatic sciences. This review discusses potential interactions among mechanisms implicated in maintaining aquatic food webs such as changes in functional diversity, compartmentalization, importance of weak interactions and slow energy channels, modification of resource subsidies, stoichiometry and habitat complexity. It outlines potential research directions in aquatic sciences and discusses implications of considering these pathways in management and conservation.

Keywords

Slow energy channels Weak interactions Functional diversity Resource pulses Stoichiometry Compartmentalization Habitat complexity 

Notes

Acknowledgements

This manuscript benefited from insightful suggestions from S.M. Thomaz, H. Rantala, and two anonymous reviewers, and I am very grateful for their feedback.

References

  1. Abelson, A., P. A. Nelson, G. J. Edgar, et al., 2016. Expanding marine protected areas to include degraded coral reefs. Conservation Biology 30: 1182–1191.CrossRefPubMedGoogle Scholar
  2. Agostinho, A., L. Gomes, S. Veríssimo & E. Okada, 2004. Flood regime, dam regulation and fish in the upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.CrossRefGoogle Scholar
  3. Albrecht, M., B. Padrón, I. Bartomeus & A. Traveset, 2014. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proceedings of the Royal Society Biological Sciences 281: 20140773.CrossRefPubMedGoogle Scholar
  4. Alexiades, A. V., A. S. Flecker & C. E. Kraft, 2017. Nonnative fish stocking alters stream ecosystem nutrient dynamics. Ecological Applications 27: 956–965.CrossRefPubMedGoogle Scholar
  5. Alvarez-Filip, L., N. K. Dulvy, J. A. Gill, I. M. Côté & A. R. Watkinson, 2009. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proceedings of the Royal Society Biological Sciences 276: 3019–3025.CrossRefPubMedGoogle Scholar
  6. Bascompte, J., C. J. Melián & E. Sala, 2005. Interaction strength combinations and the overfishing of a marine food web. Proceedings of the National Academy of Sciences USA 102: 443–5447.CrossRefGoogle Scholar
  7. Bauer, S. & B. J. Hoye, 2014. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344: 1242552.CrossRefPubMedGoogle Scholar
  8. Baumgartner, M. T., A. G. Oliveira, A. A. Agostinho & L. C. Gomes, 2018. Fish functional diversity responses following flood pulses in the upper Paraná River floodplain. Ecology of Freshwater Fish 27: 910–919.CrossRefGoogle Scholar
  9. Benedetti-Cecchi, L., I. Bertocci, S. Vaselli & E. Maggi, 2006. Temporal variance reverses the impact of high mean intensity of stress in climate change experiments. Ecology 87: 2489–2499.CrossRefPubMedGoogle Scholar
  10. Benke, A. C., R. L. Henry III, D. M. Gillespie & R. J. Hunter, 1985. Importance of snag habitat for animal production in Southeastern streams. Fisheries 10: 8–13.CrossRefGoogle Scholar
  11. Borst, A. C. W., W. C. E. P. Verberk, C. Angelini, J. Schotanus, J.-W. Wolters, M. J. A. Christianen, et al., 2018. Foundation species enhance food web complexity through non-trophic facilitation. PLoS ONE 13: e0199152.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bouwman, L., K. K. Goldewijk, K. W. Van Der Hoek, A. H. W. Beusen, D. P. Van Vuuren, J. Willems, M. C. Rufino & E. Stehfest, 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences USA 110: 20882–20887.CrossRefGoogle Scholar
  13. Bracken, M. E. S. & N. H. N. Low, 2012. Realistic losses of rare species disproportionately impact higher trophic levels. Ecology Letters 15: 461–467.CrossRefPubMedGoogle Scholar
  14. Brennan, S. R., D. E. Schindler, T. J. Cline, T. E. Walsworth, G. Buck & D. P. Fernandez, 2019. Shifting habitat mosaics and fish production across river basins. Science 364: 783–786.CrossRefPubMedGoogle Scholar
  15. Burdon, F. J., A. R. McIntosh & J. S. Harding, 2018. Mechanisms of trophic niche compression: evidence from landscape disturbance. bioRxiv preprint  https://doi.org/10.1101/329623.
  16. Calizza, E., M. L. Costantini & L. Rossi, 2015. Effect of multiple disturbances on food web vulnerability to biodiversity loss in detritus-based systems. Ecosphere 6: 124.CrossRefGoogle Scholar
  17. Canning, A. D. & R. G. Death, 2019. Food web structure but not robustness differ between rivers, lakes and estuaries. Oecologia Australis 23: 112–126.CrossRefGoogle Scholar
  18. Cárdenas, A. L. & P. J. Harries, 2010. Effect of nutrient availability on marine origination rates throughout the Phanerozoic eon. Nature Geoscience 3: 430–434.CrossRefGoogle Scholar
  19. Carnicer, J., J. Sardans, C. Stefanescu, A. Ubach, M. Bartrons, D. Asensio & J. Pẽnuelas, 2015. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C–N–P imbalances. Journal of Plant Physiology 172: 82–91.CrossRefPubMedGoogle Scholar
  20. Carrara, F., A. Giometto, M. Seymour, A. Rinaldo & F. Altermatt, 2015. Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities. Ecology 96: 1340–1350.CrossRefPubMedGoogle Scholar
  21. Caskenette, A. L. & K. S. McCann, 2017. Biomass reallocation between juveniles and adults mediates food web stability by distributing energy away from strong Interactions. PLoS ONE 12(1): e0170725.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Colléter, M., D. Gascuel, C. Albouy, P. Francour, L. Tito de Morais, A. Valls & F. Le Loc’h, 2014. Fishing inside or outside? A case studies analysis of potential spillover effect from marine protected areas, using food web models. Journal of Marine Systems 139: 383–395.CrossRefGoogle Scholar
  23. Cuddington, K. & P. Yodzis, 2002. Predator–prey dynamics and movement in fractal environments. The American Naturalist 160: 119–134.CrossRefPubMedGoogle Scholar
  24. Czarnecka, M., 2016. Coarse woody debris in temperate littoral zones: implications for biodiversity, food webs and lake management. Hydrobiologia 767: 13–25.CrossRefGoogle Scholar
  25. Degerman, R., R. Lefébure, P. Byström, U. Bamstedt, S. Larsson & A. Andersson, 2018. Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon. Hydrobiologia 805: 131–146.CrossRefGoogle Scholar
  26. Dougoud, M., L. Vinckenbosch, R. P. Rohr, L. F. Bersier & C. Mazza, 2018. The feasibility of equilibria in large ecosystems: a primary but neglected concept in the complexity-stability debate. PLoS Computational Biology 14: e1005988.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dunne, J. A., R. J. Williams & N. D. Martinez, 2002. Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences USA 99: 12917–12922.CrossRefGoogle Scholar
  28. Edwards, K. F., K. M. Aquilino, R. J. Best, K. L. Sellheim & J. J. Stachowicz, 2010. Prey diversity is associated with weaker consumer effects in a meta-analysis of benthic marine experiments. Ecology Letters 13: 194–201.CrossRefPubMedGoogle Scholar
  29. Ellis, E. C., K. K. Goldewijk, S. Siebert, D. Lightman & N. Ramankutty, 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography 19: 589–606.Google Scholar
  30. Elser, J. J., T. Andersen, J. S. Baron, A. K. Bergstrom, M. Jansson, M. Kyle, et al., 2009. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326: 835–837.CrossRefPubMedGoogle Scholar
  31. Emmerson, M. C. & J. M. Yearsley, 2004. Weak interactions, omnivory and emergent food-web properties. Proceedings of the Royal Society Biological Sciences 271: 397–405.CrossRefPubMedGoogle Scholar
  32. Estes, J. A., J. Terborgh, J. S. Brashares, et al., 2011. Trophic downgrading of planet Earth. Science 333: 301–306.CrossRefPubMedGoogle Scholar
  33. Ferguson, J. W., M. Healey, P. Dugan & C. Barlow, 2011. Potential effects of dams on migratory fish in the Mekong River: lessons from salmon in the Fraser and Columbia rivers. Environmental Management 47: 141–159.CrossRefPubMedGoogle Scholar
  34. Flynn, D. F. B., N. Mirotchnick, M. Jain, M. I. Palmer & S. Naeem, 2011. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92: 1573–1581.CrossRefPubMedGoogle Scholar
  35. Frainer, A., L. E. Polvi, R. Jansson & B. G. McKie, 2018. Enhanced ecosystem functioning following stream restoration: the roles of habitat heterogeneity and invertebrate species traits. Journal of Applied Ecology 55: 377–385.CrossRefGoogle Scholar
  36. Gaedke, U., B. E. Beisner, A. Binzer, A. Downing, C. Guill, T. Klauschies, J. J. Kuiper, F. H. Soudijn & W. M. Mooij, 2018. Importance of trait-related flexibility for food-web dynamics and the maintenance of biodiversity. In Moore, J. C., P. C. de Ruiter, K. S. McCann & V. Wolters (eds), Adaptive Food Webs: Stability and Transitions of Real and Model Ecosystems. Cambridge University Press, Cambridge: 146–163.Google Scholar
  37. Gagné, T. O., K. D. Hyrenbach, M. E. Hagemann, O. L. Bass, S. L. Pimm, M. MacDonald, B. Peck & K. S. Van Houtan, 2018. Seabird trophic position across three ocean regions tracks ecosystem differences. Frontiers in Marine Science 5: 317.CrossRefGoogle Scholar
  38. Galloway, J. N., et al., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889–892.CrossRefPubMedGoogle Scholar
  39. Gellner, G. & K. S. McCann, 2016. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nature Communications 7: 11180.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Giam, X., R. K. Hadiaty, H. H. Tan, L. R. Parenti, D. Wowor, S. Sauri, K. Y. Chong, D. C. J. Yeo & D. S. Wilcove, 2015. Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia. Conservation Biology 29: 1357–1367.CrossRefPubMedGoogle Scholar
  41. Gilarranz, L. J., C. Mora & J. Bascompte, 2016. Anthropogenic effects are associated with a lower persistence of marine food webs. Nature Communications 7: 10737.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Going, B. M. & T. L. Dudley, 2008. Invasive riparian plant litter alters aquatic insect growth. Biological Invasions 10: 1041–1051.CrossRefGoogle Scholar
  43. Grass, I., B. Jauker, I. Steffan-Dewenter, T. Tscharntke & F. Jauker, 2018. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nature Ecology and Evolution 2: 1408–1417.CrossRefPubMedGoogle Scholar
  44. Guimerà, D., D. B. Stouffer, M. Sales-Pardo, E. A. Leicht, M. E. J. Newman & L. A. N. Amaral, 2010. Origin of compartmentalization in food webs. Ecology 91: 2941–2951.CrossRefPubMedGoogle Scholar
  45. Haberl, H., N. B. Schulz, C. Plutzar, et al., 2004. Human appropriation of net primary production and species diversity in agricultural landscapes. Agriculture, Ecosystems and Environment 102: 213–218.CrossRefGoogle Scholar
  46. Hansen, A. G., J. R. Gardner, K. A. Connelly, M. Polacek & D. A. Beauchamp, 2018. Trophic compression of lake food webs under hydrologic disturbance. Ecosphere 9: e02304.CrossRefGoogle Scholar
  47. Hautier, Y., et al., 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508: 521–525.CrossRefPubMedGoogle Scholar
  48. Hayes, N. M., M. J. Vanni, M. J. Horgan & W. H. Renwick, 2015. Climate and land use interactively affect lake phytoplankton nutrient limitation status. Ecology 96: 392–402.CrossRefPubMedGoogle Scholar
  49. Heckmann, L., B. Drossel, U. Brose & C. Guill, 2012. Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecology Letters 15: 243–250.CrossRefPubMedGoogle Scholar
  50. Heilpern, S. A. & J. T. Wootton, 2018. Process catalyzers in Amazonian rivers: large woody debris modifies ecosystem processes across freshwater habitats. Ecosphere 9: 2030.CrossRefGoogle Scholar
  51. Hempson, T. N., N. A. J. Graham, M. A. MacNeil, N. Bodin & S. K. Wilson, 2018. Regime shifts shorten food chains for mesopredators with potential sublethal effects. Functional Ecology 32: 820–830.CrossRefGoogle Scholar
  52. Holt, R. D., 2008. Theoretical perspectives on resource pulses. Ecology 89: 671–681.CrossRefPubMedGoogle Scholar
  53. Houk, P., J. Cuetos-Bueno, A. A. Kerr & K. McCann, 2018. Linking fishing pressure with ecosystem thresholds and food web stability on coral reefs. Ecological Monographs 88: 109–119.CrossRefGoogle Scholar
  54. Huffaker, C. B., 1958. Experimental studies on predation: dispersion factors and predator–prey oscillations. Hilgardia 27: 795–835.CrossRefGoogle Scholar
  55. Huxel, G. R. & K. McCann, 1998. Food web stability: the influence of trophic flows across habitats. The American Naturalist 152: 460–469.CrossRefPubMedGoogle Scholar
  56. Kausrud, K. L., A. Mysterud, H. Steen, J. Olav Vik, E. Østbye, B. Cazelles, E. Framstad, A. M. Eikeset, I. Mysterud, T. Solhøy & N. C. Stenseth, 2008. Linking climate change to lemming cycles. Nature 456: 93–97.CrossRefPubMedGoogle Scholar
  57. Kominoski, J. S. & A. D. Rosemond, 2012. Conservation from the bottom up: forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshwater Science 31: 51–68.CrossRefGoogle Scholar
  58. Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.CrossRefGoogle Scholar
  59. Kratina, P., R. M. LeCraw, T. Ingram & B. R. Anholt, 2012. Stability and persistence of food webs with omnivory: is there a general pattern? Ecosphere 3: 50.CrossRefGoogle Scholar
  60. Krause, A. E., K. A. Frank, D. M. Mason, R. E. Ulanowicz & W. W. Taylor, 2003. Compartments revealed in food-web structure. Nature 426: 282–285.CrossRefPubMedGoogle Scholar
  61. Kuiper, J. J., C. van Altena, P. C. de Ruiter, L. P. A. van Gerven, J. H. Janse & W. M. Mooij, 2015. Food-web stability signals critical transitions in temperate shallow lakes. Nature Communications 6: 7727.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kurokawa, H., D. A. Peltzer & D. A. Wardle, 2010. Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Functional Ecology 24: 513–523.CrossRefGoogle Scholar
  63. Landi, P., H. O. Minoarivelo, Å. Brännström, C. Hui & U. Dieckmann, 2018. Complexity and stability of ecological networks: a review of the theory. Population Ecology 60:319–345.CrossRefGoogle Scholar
  64. Larsen, S. & S. J. Ormerod, 2010. Combined effects of habitat modification on trait composition and species nestedness in river invertebrates. Biological Conservation 143: 2638–2646.CrossRefGoogle Scholar
  65. Levi, P. S., T. Riis, A. B. Alnøe, M. Peipoch, K. Maetzke, C. Bruus & A. Baattrup-Pedersen, 2015. Macrophyte complexity controls nutrient uptake in lowland streams. Ecosystems 18: 914–931.CrossRefGoogle Scholar
  66. McAbendroth, L., P. M. Ramsay, A. Foggo, S. D. Rundle & D. T. Bilton, 2005. Does macrophytes fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279–290.CrossRefGoogle Scholar
  67. McCann, K. & A. Hastings, 1997. Re-evaluating the omnivory-stability relationship in food webs. Proceedings of the Royal Society Biological Sciences 264: 1249–1254.CrossRefGoogle Scholar
  68. McCann, K., A. Hastings & G. R. Huxel, 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.CrossRefGoogle Scholar
  69. McCann, K. S. & N. Rooney, 2009. The more food webs change, the more they stay the same. Philosophical Transactions of the Royal Society B 364: 1789–1801.CrossRefGoogle Scholar
  70. McDonald-Madden, E., R. Sabbadin, E. T. Game, P. W. J. Baxter, I. Chadès & H. P. Possingham, 2016. Using food-web theory to conserve ecosystems. Nature Communications 7: 10245.CrossRefPubMedPubMedCentralGoogle Scholar
  71. McMahon, T. A., N. T. Halstead, S. Johnson, T. R. Raffel, J. M. Romansic, P. W. Crumrine & J. R. Rohr, 2012. Fungicide-induced declines of freshwater biodiversity modify ecosystem functions and services. Ecology Letters 15: 714–722.CrossRefPubMedGoogle Scholar
  72. McMeans, B. C., K. S. McCann, M. Humphries, N. Rooney & A. T. Fisk, 2015. Food web structure in temporally-forced ecosystems. Trends in Ecology and Evolution 30: 662–672.CrossRefPubMedGoogle Scholar
  73. Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, D.C., USA. [available on internet https://www.millenniumassessment.org/documents/document.356.aspx.pdf]
  74. Moody, E. K. & G. M. Wilkinson, 2019. Functional shifts in lake zooplankton communities with hypereutrophication. Freshwater Biology 64: 608–616.CrossRefGoogle Scholar
  75. Moore, J. C. & H. W. Hunt, 1988. Resource compartmentation and the stability of real ecosystems. Nature 333: 261–263.CrossRefGoogle Scholar
  76. Myers, R. A. & B. Worm, 2003. Rapid worldwide depletion of predatory fish communities. Nature 423: 280–283.CrossRefPubMedGoogle Scholar
  77. Naiman, R. J., R. E. Bilby, D. E. Schindler & J. M. Helfield, 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5: 399–417.CrossRefGoogle Scholar
  78. Neutel, A.-M., J. A. P. Heesterbeek & P. C. de Ruiter, 2002. Stability in real food webs: weak links in long loops. Science 296: 1120–1123.CrossRefGoogle Scholar
  79. Nowlin, W. H., M. J. Vanni & L. H. Yang, 2008. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89: 647–659.CrossRefPubMedGoogle Scholar
  80. Oliveira, A. G., M. T. Baumgartner, L. C. Gomes, R. M. Dias & A. A. Agostinho, 2018. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology 63: 293–305.CrossRefGoogle Scholar
  81. Oliver, T. H., et al., 2015. Biodiversity and resilience of ecosystem functions. Trends in Ecology and Evolution 30: 673–684.CrossRefPubMedGoogle Scholar
  82. Palmer, M. A., H. L. Menninger & E. Bernhardt, 2010. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55: 205–222.CrossRefGoogle Scholar
  83. Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F. J. Torres, 1998. Fishing down marine food webs. Science 279: 860–863.CrossRefGoogle Scholar
  84. Pauly, D., V. Christensen, S. Guénette, T. J. Pitcher, U. R. Sumaila, C. J. Walters, R. Watson & D. Zeller, 2002. Towards sustainability in world fisheries. Nature 418: 689–695.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Perkins, D. M., J. Reiss, G. Yvon-Durocher & G. Woodward, 2010. Global change and food webs in running waters. Hydrobiologia 657: 181–198.CrossRefGoogle Scholar
  86. Quévreux, P. & U. Brose, 2019. Metabolic adjustment enhances food web stability. Oikos 128: 54–63.CrossRefGoogle Scholar
  87. Rees, M. J., N. A. Knott, J. Neilson, M. Linklater, I. Osterloh, A. Jordan & A. R. Davis, 2018. Accounting for habitat structural complexity improves the assessment of performance in no-take marine reserves. Biological Conservation 224: 100–110.CrossRefGoogle Scholar
  88. Rezende, E. L., E. M. Albert, M. A. Fortuna & J. Bascompte, 2009. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecology Letters 12: 779–788.CrossRefPubMedGoogle Scholar
  89. Richmond, E. K., E. J. Rosi, D. M. Walters, J. Fick, S. K. Hamilton, T. Brodin, A. Sundelin & M. R. Grace, 2018. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nature Communications 9: 4491.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Ripple, W. J., et al., 2014. Status and ecological effects of the world’s largest carnivores. Science 343: 1241484.CrossRefPubMedGoogle Scholar
  91. Rooney, N., K. McCann, G. Gellner & J. C. Moore, 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.CrossRefPubMedGoogle Scholar
  92. Sanders, D., E. Thébault, R. Kehoe & F. J. F. van Veen, 2018. Trophic redundancy reduces vulnerability to extinction cascades. Proceedings of the National Academy of Sciences USA 115: 2419–2424.CrossRefGoogle Scholar
  93. Säterberg, T., S. Sellman & B. Ebenman, 2013. High frequency of functional extinctions in ecological networks. Nature 499: 468–471.CrossRefPubMedGoogle Scholar
  94. Scheffer, M., 1997. On the implications of predator avoidance. Aquatic Ecology 31: 99–107.CrossRefGoogle Scholar
  95. Scheffer, M., E. H. van Nes, M. Holmgren & T. Hughes, 2008. Pulse-driven loss of top-down control: the critical-rate hypothesis. Ecosystems 11: 226–237.CrossRefGoogle Scholar
  96. Shantz, A. A., N. P. Lemoine & D. E. Burkepile, 2016. Nutrient loading alters the performance of key nutrient exchange mutualisms. Ecology Letters 19: 20–28.CrossRefPubMedGoogle Scholar
  97. Spiesman, B. J. & B. D. Inouye, 2013. Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology 94: 2688–2696.CrossRefPubMedGoogle Scholar
  98. Stouffer, D. B. & J. Bascompte, 2011. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences USA 108: 3648–3652.CrossRefGoogle Scholar
  99. Strong, D. R. & K. T. Frank, 2010. Human Involvement in Food Webs. Annual Review of Environment and Resources 35: 1–23.CrossRefGoogle Scholar
  100. Takimoto, G., T. Iwata & M. Murakami, 2002. Seasonal subsidy stabilizes food web dynamics: balance in a heterogeneous landscape. Ecological Research 17: 433–439.CrossRefGoogle Scholar
  101. Thompson, M. S. A., S. J. Brooks, C. D. Sayer, G. Woodward, J. C. Axmacher, D. M. Perkins & C. Gray, 2018. Large woody debris “rewilding” rapidly restores biodiversity in riverine food webs. Journal of Applied Ecology 55: 895–904.CrossRefGoogle Scholar
  102. Thompson, R. M., U. Brose, J. A. Dunne, R. O. Hall Jr., S. Hladyz, R. L. Kitching, N. D. Martinez, H. Rantala, T. N. Romanuk, D. B. Stouffer & J. M. Tylianakis, 2012. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution 27: 689–697.CrossRefPubMedGoogle Scholar
  103. Tonkin, J. D., D. M. Merritt, J. D. Olden, L. V. Reynolds & D. A. Lytle, 2018. Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology and Evolution 2: 86–93.CrossRefPubMedGoogle Scholar
  104. Turnbull, J. W., Y. S. Esmaeili, G. F. Clark, W. F. Figueira, E. L. Johnston & R. Ferrari, 2018. Key drivers of effectiveness in small marine protected areas. Biodiversity and Conservation 27: 2217–2242.CrossRefGoogle Scholar
  105. Vallina, S. M. & C. Le Quéré, 2011. Stability of complex food webs: resilience, resistance and the average interaction strength. Journal of Theoretical Biology 272: 160–173.CrossRefPubMedGoogle Scholar
  106. van Altena, C., L. Hemerik & P. C. de Ruiter, 2016. Food web stability and weighted connectance: the complexity-stability debate revisited. Theoretical Ecology 9:49–58.CrossRefGoogle Scholar
  107. Vitousek, P. M., C. M. D’Antonio & L. L. Loope, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737–750.Google Scholar
  108. Wang, S. & U. Brose, 2018. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters 21: 9–20.CrossRefPubMedGoogle Scholar
  109. Weinzettel, J., D. Vačkář & H. Medková, 2018. Human footprint in biodiversity hotspots. Frontiers in Ecology and the Environment 16: 447–452.CrossRefGoogle Scholar
  110. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.Google Scholar
  111. Wilkinson, C. L., D. C. J. Yeo, H. H. Tan, A. H. Fikri & R. M. Ewers, 2018. Land-use change is associated with a significant loss of freshwater fish species and functional richness in Sabah, Malaysia. Biological Conservation 222: 164–171.CrossRefGoogle Scholar
  112. Williams, J. J., Y. P. Papastamatiou, J. E. Caselle, D. Bradley & D. M. P. Jacoby, 2018. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proceedings of the Royal Society Biological Sciences 285: 20172456.CrossRefPubMedGoogle Scholar
  113. Wootton, K. L., 2017. Omnivory and stability in freshwater habitats: does theory match reality? Freshwater Biology 62: 821–832.CrossRefGoogle Scholar
  114. Worm, B., et al., 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787–790.CrossRefPubMedGoogle Scholar
  115. Yang, L. H., J. L. Bastow, K. O. Spence & A. N. Wright, 2008. What can we learn from resource pulses? Ecology 89: 621–634.CrossRefPubMedGoogle Scholar
  116. Zhang, Y., L. Cheng, K. Li, L. Zhang, Y. Cai, X. Wang & J. Heino, 2019. Nutrient enrichment homogenizes taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes. Limnology and Oceanography 64: 1047–1058.CrossRefGoogle Scholar
  117. Ziegler, J. P., C. T. Solomon, B. P. Finney & I. Gregory-Eaves, 2015. Macrophyte biomass predicts food chain length in shallow lakes. Ecosphere 6: 5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Natural Resources Research InstituteUniversity of Minnesota DuluthDuluthUSA

Personalised recommendations