Advertisement

Comparative population dynamics of six brachionid rotifers (Rotifera) fed seston from a hypertrophic, high altitude shallow waterbody from Mexico

  • S. S. S. SarmaEmail author
  • S. Nandini
ROTIFERA XV
  • 21 Downloads

Abstract

In hypertrophic waterbodies, seston may be an important food for planktonic rotifers. Therefore, we hypothesized that seston in the hypertrophic waterbody (Lake Xochimilco, State of Mexico) supports high diversity and density of rotifers. To test this, we conducted growth experiments using six rotifer species (Brachionus bidentatus, Brachionus budapestinensis, Brachionus calyciflorus, Brachionus caudatus, Brachionus havanaensis and Plationus patulus) cultured on three seston size fractions (< 3, 3–15 and < 15 µm) for 15 days. The three fractions of seston contained 3.15, 6.30, and 9.45 μg C ml−1, respectively. The physical and chemical variables of the waterbody were fairly stable during the study period. Brachionus budapestinensis, B. calyciflorus and B. caudatus showed negative growth rates when cultured on seston size of 3–15 or < 15 µm, while B. bidentatus had negative r on < 3 µm particle size. Brachionus havanaensis and P. patulus were well adapted to feed on different sizes of seston, while B. budapestinensis and B. caudatus had higher growth on < 3 µm particle size. These results explain the high diversity and density of brachionid rotifers in this waterbody where they coexist by partitioning the available seston.

Keywords

Brachionus Plationus Population growth Rate of population increase Lake Xochimilco 

Notes

Acknowledgements

Three anonymous reviewers and handling editor(s) have greatly improved our presentation. We also thank DGAPA—PAPIIT (IN214618 & IN219218) for financial support.

References

  1. Adebayo, E. A. & D. Martínez-Carrera, 2015. Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. African Journal of Biotechnology 14(1): 52–67.CrossRefGoogle Scholar
  2. Athibai, S. & L.-O. Sanoamuang, 2008. Effect of temperature on fecundity, life span and morphology of long- and short-spined clones of Brachionus caudatus f. apsteini (Rotifera). International Review of Hydrobiology 93(6): 690–699.CrossRefGoogle Scholar
  3. Bogdan, K. G. & J. J. Gilbert, 1982. Seasonal patterns of feeding by natural-populations of Keratella, Polyarthra, and Bosmina – clearance rates, selectivities, and contributions to community grazing. Limnology and Oceanography 27: 918–934.CrossRefGoogle Scholar
  4. Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal biotechnology. Cambridge University Press, London.Google Scholar
  5. De Pauw, N., J. Morales & G. Persoone, 1984. Mass culture of microalgae in aquaculture systems: progress and constraints. Hydrobiologia 116: 121–134.CrossRefGoogle Scholar
  6. Declerck, S., M. Vanderstukken, S. Pals, K. Muylaert & L. De Meester, 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88(9): 2199–2210.CrossRefGoogle Scholar
  7. DeMott, W. R., 1989. The role of competition in zooplankton succession. In Sommer, U. (ed.), Plankton ecology: succession in plankton communities. Springer, New York: 195–252.CrossRefGoogle Scholar
  8. Doohan, M., 1973. An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia 13(4): 351–362.CrossRefGoogle Scholar
  9. Dumont, H. J., S. S. S. Sarma & A. J. Ali, 1995. Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshwater Biology 33: 39–46.CrossRefGoogle Scholar
  10. Ejsmont-Karabin, J., R. D. Gulati & J. Rooth, 1989. Is food availability the main factor controlling the abundance of Euchlanis dilatata lucksiana Hauer in a shallow, hypertropic lake? Hydrobiologia 186(187): 29–34.CrossRefGoogle Scholar
  11. Gayosso-Morales, M. A., S. Nandini, F. F. Martínez-Jeronimo & S. S. S. Sarma, 2017. Effect of organic and inorganic turbidity on the zooplankton community structure of a shallow waterbody in Central Mexico (Lake Xochimilco, Mexico). Journal of Environmental Biology 38(6): 1183–1196.CrossRefGoogle Scholar
  12. Gulati, R. & W. DeMott, 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology 38(3): 753–768.CrossRefGoogle Scholar
  13. Gulati, R. D., J. Rooth & J. Ejsmont-Karabin, 1987. A laboratory study of feeding and assimilation in Euchlanis dilatata lucksiana. Hydrobiologia 147: 289–296.CrossRefGoogle Scholar
  14. Jiménez-Contreras, J., S. Nandini & S. S. S. Sarma, 2018. Diversity of Rotifera (Monogononta) and egg ratio of selected taxa in the canals of Xochimilco (Mexico City). Wetlands 38: 1033–1044.CrossRefGoogle Scholar
  15. Kerfoot, W. C., W. R. DeMott & C. Levitan, 1985. Non-linearities in competitive interactions: component variables or system response. Ecology 66: 959–965.CrossRefGoogle Scholar
  16. Kirk, K. L., 1991. Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72(3): 915–923.CrossRefGoogle Scholar
  17. Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5): 1741–1755.CrossRefGoogle Scholar
  18. Krebs, C. J., 1985. Ecology; the experimental analysis of distribution and abundance, 3rd ed. Harper & Row, New York.Google Scholar
  19. Lamberti, G.A. & F.R. Hauer, 2017. Methods in Stream Ecology. In Ecosystem Function, Vol. 2, 3rd edn, Elsevier, London.Google Scholar
  20. Lucía-Pavón, E., S. S. S. Sarma & S. Nandini, 2001. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Revista de Biología Tropical 49(3–4): 895–902.PubMedGoogle Scholar
  21. Miracle, M. R., E. Vicente, S. S. S. Sarma & S. Nandini, 2014. Planktonic rotifer feeding in hypertrophic conditions. International Review of Hydrobiology 99: 141–150.CrossRefGoogle Scholar
  22. Müller-Navarra, D. C., M. T. Brett, S. Park, S. Chandra, A. P. Ballantyne, E. Zorita & C. R. Goldman, 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427: 69–72.CrossRefGoogle Scholar
  23. Nandini, S., P. Ramírez-García & S. S. S. Sarma, 2005. Seasonal variations in the species diversity of planktonic rotifers in Lake Xochimilco, Mexico. Journal of Freshwater Ecology 20(2): 287–294.CrossRefGoogle Scholar
  24. Nandini, S., S. S. S. Sarma, R. J. Amador-López & S. Bolaños-Muñoz, 2007. Population growth and body size in five rotifer species in response to variable food concentration. Journal of Freshwater Ecology 22: 1–10.CrossRefGoogle Scholar
  25. Nandini, S., P. Ramírez-García & S. S. S. Sarma, 2016. Water quality indicators in Lake Xochimilco, Mexico: zooplankton and Vibrio cholera. Journal of Limnology 75(1): 91–100.Google Scholar
  26. Onandia, G., J. D. Dias & M. R. Miracle, 2015. Zooplankton grazing on natural algae and bacteria under hypertrophic conditions. Limnetica 34(2): 541–560.Google Scholar
  27. Ooms-Wilms, A. L., 1997. Are bacteria an important food source for rotifers in eutrophic lakes? Journal of Plankton Research 19(8): 1125–1141.CrossRefGoogle Scholar
  28. Pavón-Meza, E. L., S. S. S. Sarma & S. Nandini, 2004. Combined effects of food (Chlorella vulgaris) concentration and temperature on the population growth of Brachionus havanaensis (Rotifera: Brachionidae). Journal of Freshwater Ecology 19(4): 521–530.CrossRefGoogle Scholar
  29. Pilarska, J., 1977. Eco-physiological studies on Brachionus rubens Ehrbg. (Rotatoria). III. Energy balances. Polskie Archiwum Hydrobiologii 24: 343–354.Google Scholar
  30. Pourriot, R., 1965. Recherches sur l’écologie des Rotifères. Publications du laboratoire Arago. Volume 4349. Thèses présentées à la Faculté des Sciences de l’Université de Paris, Paris.Google Scholar
  31. Regali-Seleghim, M. H. & M. J. L. Godinho, 2004. Peritrich epibiont protozoans in the zooplankton of a subtropical shallow aquatic ecosystem (Monjolinho Reservoir, São Carlos, Brazil). Journal of Plankton Research 26(5): 501–508.CrossRefGoogle Scholar
  32. Sarma, S. S. S., 1991. Rotifers and aquaculture (review). Environment and Ecology 9: 414–428.Google Scholar
  33. Sarma, S. S. S., P. S. Larios-Jurado & S. Nandini, 2001. Effect of three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Revista de Biología Tropical 49(1): 75–82.Google Scholar
  34. Sarma, S. S. S., A. E. Fuentes-Barradas, S. Nandini & D. J. Chaparro-Herrera, 2017. Feeding behaviour of larval Ambystoma granulosum (Amphibia: Caudata). Journal of Environmental Biology 38(6): 1241–1248.CrossRefGoogle Scholar
  35. Sarma, S. S. S., J. A. Guevara-Franco, B. Almaraz-Ornelas & S. Nandini, 2018. Interspecific effects of allelochemicals of 4-species of Brachionidae (Rotifera: Monogononta) on the population growth. Allelopathy Journal 45(2): 277–290.CrossRefGoogle Scholar
  36. Starkweather, P. L., J. J. Gilbert & T. M. Frost, 1979. Bacterial feeding by the rotifer Brachionus calyciflorus: clearance and ingestion rates, behavior and population dynamics. Oecologia 44(1): 26–30.CrossRefGoogle Scholar
  37. Stephan-Otto, E., 2003. El Agua en la Cuenca de México. Sus problemas históricos y perspectivas de solución. Proceedings of the Second International Conference on Xochimilco, Vol. 1. Ecological Park of Xochimilco, Mexico City, Mexico.Google Scholar
  38. Wallace, R. L. & T. W. Snell, 2010. Rotifera. In Thorp, J. & A. Covich (eds), Ecology and Classifications of North American Freshwater Invertebrates, 3rd ed. Elsevier, Oxford: 173–235.CrossRefGoogle Scholar
  39. Wilms, A. L., R. D. Gulati & G. Postema, 1991. First attempt to measure the clearance rate of Anuraeopsis fissa. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 24: 742–744.Google Scholar
  40. Yoshinaga, T., A. Hagiwara & K. Tsukamoto, 2001. Why do rotifer populations present a typical sigmoid growth curve? Hydrobiologia 446(447): 99–105.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Nacional Autónoma de MéxicoTlalnepantlaMexico

Personalised recommendations