Advertisement

Microbial food-web components in two hypertrophic human-impacted Pampean shallow lakes: interactive effects of environmental, hydrological, and temporal drivers

  • M. R. SchiaffinoEmail author
  • N. Diovisalvi
  • D. Marfetán Molina
  • P. Fermani
  • C. Li Puma
  • L. Lagomarsino
  • M. V. Quiroga
  • G. L. Pérez
Primary Research Paper
  • 16 Downloads

Abstract

Few studies have intensively assessed the dynamic of all planktonic components and their microbial communities in hypertrophic shallow lakes. The aim of this work was to study the potential drivers shaping the microbial food-web components (heterotrophic bacteria and strictly phototrophic microplankton). Thus, we studied the monthly abundances and functional groups of the different planktonic food-web components (heterotrophic bacteria, picocyanobacteria, picoeukaryotes, heterotrophic flagellates, ciliates, phytoplankton, zooplankton) in two interconnected and hypertrophic Pampean shallow lakes (Gómez and Carpincho) during dry–wet periods (27-month study). We hypothesized that temporal (intra and inter-annual) factors exert a major role in shaping the microbial food-web components in both lakes. Both shallow lakes showed similar dynamic in the environmental variables, that followed inter-annual and seasonal variations. In Gómez, the variation of microbial components was mainly explained by a combination of environmental, predation, and temporal factors (38.2%), whereas in Carpincho by pure temporal drivers (31.8%). Microbial and predator components were significantly different between dry and wet periods. The connection and closeness between both lakes seem not to play a major role in the factors driving the microbial component abundances. These lakes are strongly influenced by temporal factors, which regulate not only the microbial components, but also the physical, chemical, and biological variables.

Keywords

Picoplankton Heterotrophic flagellates Ciliates Phytoplankton Zooplankton Hypertrophic shallow lakes Time series data 

Notes

Acknowledgements

We thank Viviana Lobato for her aid during sampling campaigns and Irina Izaguirre for her general support. This study was supported by the National Council of Scientific and Technical Research (Network project for the assessment and monitoring of Pampean shallow lakes, PAMPA2) and the National Agency of Scientific and Technical Promotion (PICT 2014-0918).

Supplementary material

10750_2018_3874_MOESM1_ESM.eps (4.5 mb)
Supplementary Fig. 1. Correlations between the microbial component similarity matrices (Bray–Curtis) and the water level difference matrices (Euclidean distances) in Gómez (a) and Carpincho (b) using Mantel tests. Supplementary material 1 (EPS 4613 kb)
10750_2018_3874_MOESM2_ESM.eps (6.5 mb)
Supplementary Fig. 2. Temporal variation of values along the significant (P < 0.05) axes of canonical asymmetric eigenvector maps (AEM) models of the Napierian-transformed microbial community matrix, constructed using forward selection of positive (black curves) and negatives (red curves) AEM. AEM were selected at the 0.05 level. Supplementary material 2 (EPS 6645 kb)
10750_2018_3874_MOESM3_ESM.docx (46 kb)
Supplementary material 3 (DOCX 46 kb)

References

  1. Anderson, M. J. & D. C. I. Walsh, 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersion: what null hypothesis are you testing? Ecological Monographs 83: 557–574.CrossRefGoogle Scholar
  2. APHA, 2005. Standard Methods for the Examination of Water & Wastewaters. American Public Health Association, Washington.Google Scholar
  3. Azam, F. & F. Malfatti, 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology 5: 782–791.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Azam, F., T. Fenchel, J. Field, J. Gray, L. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  5. Baho, D. L., M. N. Futter, R. K. Johnson & D. G. Angeler, 2015. Assessing temporal scales and patterns in time series: comparing methods based on redundancy analysis. Ecological Complexity 22: 162–168.CrossRefGoogle Scholar
  6. Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.CrossRefGoogle Scholar
  7. Bautista-Reyes, F. & M. Macek, 2012. Ciliate food vacuole content and bacterial community composition in the warm-monomictic crater Lake Alchichica, México. Microbial Ecology 79: 85–97.CrossRefGoogle Scholar
  8. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Modelling directional spatial processes in ecological data. Ecological Modelling 215: 325–336.CrossRefGoogle Scholar
  9. Blanchet, G., P. Legendre & O.Gauthier, 2015. AEM: Tools to construct Asymmetric eigenvector maps (AEM) spatial variables. R package version 0.6. http://R-Forge.R-project.org.
  10. Błędzki, L. A. & A. M. Ellison, 2000. Effects of water retention time on zooplankton of shallow rheolimnic reservoirs. Verh Internat Verein Limnol 27: 2865–2869.Google Scholar
  11. Borcard, D., P. Lengendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  12. Bouvy, M., S. M. Nascimento, R. J. R. Molica, A. Ferreira, V. Huszar & S. M. F. O. Azevedo, 2003. Limnological features in Tapacurá reservoir (Northeast Brazil) during a severe drought. Hydrobiologia 493: 115–130.CrossRefGoogle Scholar
  13. Brown, B. L., E. R. Sokol, J. Skelton & B. Tornwall, 2017. Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia 183: 643–652.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Burns, C. W. & L. M. Galbraith, 2006. Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research 29: 127–139.CrossRefGoogle Scholar
  15. Callieri, C., 2007. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Reviews 1: 1–28.CrossRefGoogle Scholar
  16. Callieri, C. & M. L. Pinolini, 1995. Picoplankton in Lake Maggiore, Italy. Internationale Revue der Gesamten Hydrobiologie 80: 491–501.CrossRefGoogle Scholar
  17. Canevari, P., D. E. Blanco, E. H. Bucher, G. Castro, & I. Davidson, 1999. Los humedales de la Argentina. Clasificación, situación actual, conservación y legislación, 2 da ed. Wetlands International Publicación N846, Buenos Aires, Argentina.Google Scholar
  18. Chaparro, G., M. C. Marinone, R. Lombardo, M. R. Schiaffino, A. Guimarães & I. O’Farrell, 2011. Zooplankton succession during extraordinary drought–flood cycles: a case study in a South American floodplain lake. Limnologica 4: 371–381.CrossRefGoogle Scholar
  19. Chaparro, G., M. S. Fontanarrosa, M. R. Schiaffino, P. de Tezanos Pinto & I. O’Farrell, 2014. Seasonal-dependence in the responses of biological communities to flood pulses in warm temperate floodplain lakes: implications for the “alternative stable states” model. Aquatic Sciences 76: 579–594.CrossRefGoogle Scholar
  20. Claps, M. C., N. A. Gabellone & H. H. Benítez, 2004. Zooplankton biomass in an eutrophic shallow lake (Buenos Aires, Argentina): spatio-temporal variations. Annales de Limnologie 40: 201–210.CrossRefGoogle Scholar
  21. Clarke, K. R., 1993. Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  22. Colina, M., D. Calliari, C. Carballo & C. Kruk, 2016. A trait-based approach to summarize zooplankton-phytoplankton interactions in freshwaters. Hydrobiologia 767: 221–233.CrossRefGoogle Scholar
  23. Conty, A. & E. Bécares, 2013. Unimodal patterns of microbial communities with eutrophication in Mediterranean shallow lakes. Hydrobiologia 700: 257–265.CrossRefGoogle Scholar
  24. Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–121.CrossRefGoogle Scholar
  25. Dickman, M., 1969. Some effects of lake renewal on phytoplankton productivity and species composition. Limnology and Oceanography 14: 660–666.CrossRefGoogle Scholar
  26. Diovisalvi, N., V. Y. Bohn, M. C. Piccolo, G. M. E. Perillo, C. Baigún & H. E. Zagarese, 2015. Shallow lakes from the Central Plains of Argentina: an overview and worldwide comparative analysis of their basic limnological features. Hydrobiologia 752: 5–20.CrossRefGoogle Scholar
  27. Domingues, C. D., L. H. da Silva, L. M. Rangel, L. de Magalhães, A. de Melo Rocha, L. M. Lobão, R. Paiva, F. Roland, et al., 2017. Microbial food-web drivers in tropical reservoirs. Microbial Ecology 73: 505–520.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Domis, L. N., J. J. Elser, A. S. Gsell, V. L. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, et al., 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.CrossRefGoogle Scholar
  29. Dray, S., P. Legendre & G. Blanchet, 2016. packfor: forward selection with permutation (Canoco p.46). R package version 0.0-8. https://R-Forge.R-project.org.
  30. Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, et al. 2018. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.2-0. https://CRAN.R-project.org/package=adespatial.
  31. Fermani, P., N. Diovisalvi, A. Torremorell, L. Lagomarsino, H. Zagarese & F. Unrein, 2013. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714: 115–130.CrossRefGoogle Scholar
  32. Fermani, P., A. Torremorell, L. Lagomarsino, R. Escaray, F. Unrein & G. Pérez, 2015. Microbial abundance patterns along a transparency gradient suggest a weak coupling between heterotrophic bacteria and flagellates in eutrophic shallow Pampean lakes. Argentine Pampean Shallow lake. Hydrobiologia 752: 103–123.CrossRefGoogle Scholar
  33. Gabellone, N., R. Sarandón & C. Claps, 2003. Caracterización y zonificación ecológica de la cuenca del río Salado. In Gabellone, N., M. Hernández & O. Maiola (eds), Inundaciones en la Región Pampeana. Editorial de la Universidad Nacional de La Plata, La Plata: 87–122.Google Scholar
  34. Gabellone, N., M. C. Claps, L. C. Solari & N. C. Neschuk, 2005. Nutrients, conductivity and plankton in a landscape approach to a Pampean saline lowland river (Salado River, Argentina). Biogeochemistry 75: 455–477.CrossRefGoogle Scholar
  35. Gabellone, N., L. Solari & M. C. Claps, 2008. Chemical classification of the water in a lowland river basin (Salado River, Buenos Aires, Argentina) affected by hydraulic modification. Environmental Geology 53: 1353–1363.CrossRefGoogle Scholar
  36. Gasol, J. M., J. Pinhassi, L. Alonso-Sáez, H. Ducklow, G. J. Herndl, M. Koblizek, M. Labrenz, Y. Luo, et al., 2008. Towards a better understanding of microbial carbon flux in the sea. Aquatic Microbial Ecology 53: 21–38.CrossRefGoogle Scholar
  37. Giraut, M., R. Aguglino, C. Lupano, E. Bozzarello, J. Cornejo & C. Rey, 2007. Regiones hídricas superficiales de la provincia de Buenos Aires: actualización cartográfica digital. Congreso de la Asociación Española de Teledetección. de septiembre, Mar del Plata: 19–21.Google Scholar
  38. Havens, K. E., T. L. East & J. R. Beaver, 2007. Zooplankton response to extreme drought in a large subtropical lake. Hydrobiologia 589: 187–198.CrossRefGoogle Scholar
  39. Huber, P., N. Diovisalvi, M. Ferraro, S. Metz, L. Lagomarsino, M. E. Llames, M. Royo-Llonch, J. Bustingorry, et al., 2017. Phenotypic plasticity in freshwater picocyanobacteria. Environmental Microbiology 19: 1120–1133.PubMedCrossRefGoogle Scholar
  40. Iriondo, M. H. & E. C. Drago, 2004. The headwater hydrographic characteristics of large plains: the Pampa case. Ecohydrology and Hydrobiology 4: 7–16.Google Scholar
  41. Isabwe, A., J. R. Yang, Y. Wang, L. Liu, H. Chen & J. Yang, 2018. Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river. Science of the Total Environment 630: 658–667.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Izaguirre, I. & A. Vinocur, 1994. Typology of shallow lakes of the Salado River basin (Argentina), based on phytoplankton communities. Hydrobiologia 277: 49–62.CrossRefGoogle Scholar
  43. Izaguirre, I., M. L. Sánchez, M. R. Schiaffino, I. O’Farrell, P. Huber, N. Ferrer, J. Zunino, L. Lagomarsino, et al., 2015. Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? Hydrobiologia 752: 47–64.CrossRefGoogle Scholar
  44. Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, et al., 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.CrossRefGoogle Scholar
  45. José de Paggi, S. B., M. Devercelli & F. Rojas Molina, 2014. Zooplankton and their driving factors in a large subtropical river during low water periods. Fundamental and Applied Limnology 184: 125–139.CrossRefGoogle Scholar
  46. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  47. Jürgens, K. & E. Jeppesen, 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. Journal of Plankton Research 22: 1047–1070.CrossRefGoogle Scholar
  48. Jürgens, K., O. Skibbe & E. Jeppesen, 1999. Impact of meta-zooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lake. Aquatic Microbial Ecology 17: 61–75.CrossRefGoogle Scholar
  49. Kalff, J., 2003. Limnology. Prentince Hall, Upper Saddle River.Google Scholar
  50. Kobayashi, T., D. S. Ryder, G. Gordon, I. Shannon, T. Ingleton, M. Carpenter & S. J. Jacobs, 2009. Short-term response of nutrients, carbon and planktonic microbial communities to floodplain wetland inundation. Aquatic Ecology 43: 843–858.CrossRefGoogle Scholar
  51. Küppers, G. C. & M. C. Claps, 2012. Spatiotemporal variations in abundance and biomass of planktonic ciliates related to environmental variables in a temporal pond, Argentina. Zoological Studies 51(3): 298–313.Google Scholar
  52. Kruk, C., V. L. M. Huszar, E. Peeters, S. Bonilla, L. Costa, M. Lurling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.CrossRefGoogle Scholar
  53. Legendre, P. & H. J. B. Birks, 2012. From classical to canonical ordination. In Birks, H. J. B., A. F. Lotter, S. Juggins & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Data Handling and Numerical Techniques. Springer, Dordrecht: 201–248.CrossRefGoogle Scholar
  54. Legendre, P. & O. Gauthier, 2014. Statistical methods for temporal and space-time analysis of community composition data. Proceedings of the Royal Society 281: 20132728.CrossRefGoogle Scholar
  55. Llames, M., L. Lagomarsino, N. Diovisalvi, P. Fermani, A. Torremorell, G. Pérez, F. Unrein, J. Bustingorry, et al., 2009. The effects of different degrees of light availability in shallow, turbid waters: a mesocosm study. Journal of Plankton Research 31: 1517–1529.CrossRefGoogle Scholar
  56. Macek, M., K. Šimek & T. Bittl, 2001. Conspicuous peak of oligotrichous ciliates following winter stratification in a bog lake. Journal of Plankton Research 23: 353–363.CrossRefGoogle Scholar
  57. Mantel, N. & R. S. Valand, 1970. A technique of nonparametric multivariate analysis. Biometrics 26: 547–558.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Marker, A. F. H., E. A. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv für Hydrobiologie Behandlung Ergebnisse der Limnologie 14: 91–106.Google Scholar
  59. Meira, B. R., F. M. Lansac-Toha, B. T. Segovia, P. R. B. Buosi, F. A. Lansac-Tôha & L. F. M. Velho, 2018. The importance of herbivory by protists in lakes of a tropical floodplain system. Aquatic Ecology 52: 193–210.CrossRefGoogle Scholar
  60. Miller, J. K. & S. D. Farr, 1971. Bimultivariate redundancy: a comprehensive measure of interbattery relationship. Multivariate Behavioral Research 6: 313–324.CrossRefGoogle Scholar
  61. Niño-García, J. P., C. Ruiz-González & P. A. del Giorgio, 2016. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME Journal 10: 1755–1766.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Obertegger, U., G. Flaim, M. G. Braioni, R. Sommaruga, F. Corradini & A. Borsato, 2007. Water residence time as a driving force of zooplankton structure and succession. Aquatic Science 69: 575–583.CrossRefGoogle Scholar
  63. Oksanen, J., G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson & P. Solymos, 2017. Vegan: community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan.
  64. Özen, A., Ü. N. Tavşanoğlu, Aİ. Çakıroğlu, E. T. Levi, E. Jeppesen & M. Beklioğlu, 2018. Patterns of microbial food webs in Mediterranean shallow lakes with contrasting nutrient levels and predation pressures. Hydrobiologia 806: 13–27.CrossRefGoogle Scholar
  65. Pace, M. L. & J. J. Cole, 1994. Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microbial Ecology 28: 181–193.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Pace, M. L., S. E. G. Findlay & D. Lints, 1992. Zooplankton in advective environments, The Hudson River community and a comparative analysis. Canadian Journal of Fisheries and Aquatic Sciences 49: 1060–1069.CrossRefGoogle Scholar
  67. Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, et al., 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9: e111227.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pagano, M., 2008. Feeding of tropical cladocerans (Moina micrura, Diaphanosoma excisum) on natural phytoplankton: effect of phytoplankton size-structure. Journal of Plankton Research 30: 401–414.CrossRefGoogle Scholar
  69. Pérez, S., E. Sierra, F. Momo & M. Massobrio, 2015. Changes in average annual precipitation in Argentina’s Pampa region and their possible causes. Climate 3: 150–167.CrossRefGoogle Scholar
  70. Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Natural Reviews Microbiology 3: 537–546.CrossRefGoogle Scholar
  71. Pernthaler, J., B. Sattler, K. Simek, A. Schwarzenbacher & R. Psenner, 1996. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology 10: 255–263.CrossRefGoogle Scholar
  72. Pirlot, S., J. Vanderheyden, J. P. Descy & P. Servais, 2005. Abundance and biomass of heterotrophic microorganisms in Lake Tanganyika. Freshwater Biology 50: 1219–1232.CrossRefGoogle Scholar
  73. Pomeroy, L. R., 1974. The ocean’s food web, a changing paradigm. BioScience 24: 499–504.CrossRefGoogle Scholar
  74. Porter, K. G., J. D. Orcutt & J. Gerritsen, 1983. Functional response and fitness in a generalist filter feeder, Daphnia magna (Cladocera, Crustacea). Ecology 64: 735–742.CrossRefGoogle Scholar
  75. Porter, K. G., H. Pearl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner, 1988. Microbial interactions in lake food webs. In Carpenter, S. R. (ed.), Complex Interactions in Lakes Communities. Springer, New York: 209–227.CrossRefGoogle Scholar
  76. Quirós, R., 2003. The relationship between nitrate and ammonia concentrations in the pelagic zone of lakes. Limnetica 22: 37–50.Google Scholar
  77. Quirós, R., A. M. Rennella, M. A. Boveri, J. J. Rosso & A. Sosnovsky, 2002a. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral 12: 175–185.Google Scholar
  78. Quirós, R., J. J. Rosso, A. Rennella, A. Sosnovsky & M. Boveri, 2002b. Análisis del estado trófico de las lagunas pampeanas (Argentina). Interciencia 27: 584–591.Google Scholar
  79. Quirós, R., M. B. Boveri, C. A. Petracchi, A. M. Rennella, J. J. Rosso, A. Sosnovsky & H. T. Von Bernard, 2006. Los efectos de la agriculturización del humedal Pampeano sobre la eutrofización de sus lagunas. In Tundisi, J. G., T. Matsmura-Tundisi, C. Sidagis Galli, J. G. Tundisi, T. Matsumura-Tundisi & C. S. Galli (eds), Eutrofizaçaõ na América do Sul: Causas, Conseqüências e Tecnologias Degerenciamento e Controle. The International Institute of Ecology, Sao Carlos: 1–16.Google Scholar
  80. R Development Core Team, 2017. R 3.4.1: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  81. Rennella, A. M. & R. Quirós, 2002. Relations between planktivorous fish and zooplankton in two very shallow lakes of the pampa plain. Verhandlungen des Internationalen Verein Limnologie 28: 887–891.Google Scholar
  82. Rennella, A. M. & R. Quirós, 2006. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556: 181–191.CrossRefGoogle Scholar
  83. Rosso, J. J., 2008. Relación entre la abundancia y estructura de la comunidad de peces y el régimen hidrológico, en lagunas de la alta cuenca del río Salado. PhD Thesis, Universidad de Buenos Aires, Argentina.Google Scholar
  84. Sarmento, H., 2012. New paradigms in tropical limnology: the importance of the microbial food web in tropical lakes. Hydrobiologia 686: 1–14.CrossRefGoogle Scholar
  85. Segovia, B. T., D. G. Pereira, L. M. Bini, B. R. de Meira, V. S. Nishida, F. A. Lansac-Tôha & L. F. Velho, 2015. The role of microorganisms in a planktonic food web of a floodplain lake. Microbial Ecology 69: 225–233.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Segovia, B. T., B. R. Meira, F. M. Lansac-Toha, F. E. Amadeo, F. Unrein, L. F. M. Velho & H. Sarmento, 2018. Growth and cytometric diversity of bacterial assemblages under different top-down control regimes by using a size-fractionation approach. Journal of Plankton Research 40: 129–141.CrossRefGoogle Scholar
  87. Sharp, J. H., 1993. Procedures subgroup report. Marine Chemistry 41: 37–49.CrossRefGoogle Scholar
  88. Sherr, E. B. & B. F. Sherr, 1993. Protistan grazing rates via uptake of fluorescently labeled prey. In Kemp, P., B. Sherr, E. Sherr & J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publ, Boca Raton: 695–701.Google Scholar
  89. Sherr, E. B. & B. F. Sherr, 2002. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81: 293–308.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sieburth, J. M. N., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology Oceanography 23: 1256–1263.CrossRefGoogle Scholar
  91. Sinistro, R., 2010. Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland. Journal of Plankton Research 32: 209–220.CrossRefGoogle Scholar
  92. Sinistro, R., M. L. Sanchez, M. Marinone & I. Izaguirre, 2007. Experimental study of the zooplankton impact on the trophic structure of phytoplankton and the microbial assemblages in a temperate wetland (Argentina). Limnologica 37: 88–99.CrossRefGoogle Scholar
  93. Silva, L. H. S., V. L. M. Huszar, M. M. Marinho, L. M. Rangel, J. Brasil, C. D. Domingues, C. C. Branco & F. Roland, 2014. Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica 48: 1–10.CrossRefGoogle Scholar
  94. Silvoso, J., I. Izaguirre & L. Allende, 2011. Picoplankton structure in clear and turbid eutrophic shallow lakes: a seasonal study. Limnologica 41: 181–190.CrossRefGoogle Scholar
  95. Šimek, K., P. Hartman, J. Nedoma, J. Pernthaler, D. Springmann, J. Vrba & R. Psenner, 1997. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquatic Microbial Ecology 12: 49–63.CrossRefGoogle Scholar
  96. Søballe, D. M. & B. L. Kimmel, 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology 68: 1943–1954.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sommer, U. & F. Sommer, 2006. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sommaruga, R., 1995. Microbial and classical food webs: a visit to a hypertrophic lake. Microbial Ecology 17: 257–270.CrossRefGoogle Scholar
  99. ter Braak, C. J. F., 1987. Ordination. In Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data analysis in community and landscape ecology. Cambridge University Press, Wageningen: 91–173.Google Scholar
  100. ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows Urser’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  101. Torremorell, A., J. Bustigorry, R. Escaray & H. E. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37: 100–108.CrossRefGoogle Scholar
  102. Torremorell, A. M., M. E. Llames, G. L. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.CrossRefGoogle Scholar
  103. Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen Internationale Vereinigung Limnologie 9: 1–38.Google Scholar
  104. Venrick, E. L., 1978. How many cells to count? In Sournia, A. (ed.), Phytoplankton Manual. UNESCO, Paris: 167–180.Google Scholar
  105. Weisse, T., H. Müller, R. M. Pinto-Coelho, A. Schweizer, D. Springmann & G. Baldringer, 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnology Oceanography 35: 781–794.CrossRefGoogle Scholar
  106. Weisse, T., R. Anderson, H. Arndt, A. Calbelt, P. J. Hansen & D. Montagnes, 2016. Functional ecology of aquatic phagotrophic protists: concepts, limitations, and perspectives. Protistologica 55: 50–74.Google Scholar
  107. Yang, J., H. Lv, J. Yang, L. Liu, X. Yu & H. Chen, 2016. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Science of the Total Environment 557(558): 445–452.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Yang, J. R., H. Lv, A. Isabwe, L. Liu, X. Yu, H. Chen & J. Yang, 2017. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research 120: 52–63.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zingel, P. & T. Nõges, 2010. Seasonal and annual population dynamics of ciliates in a shallow eutrophic lake. Fundamental and Applied Limnology 176: 133–143.CrossRefGoogle Scholar
  110. Zingel, P., H. Agasild, T. Nõges & V. Kisand, 2007. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake. Microbial Ecology 53: 134–142.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Zingel, P., H. Agasild, K. Karus, K. Kangro, H. Tammert, I. Tõnno, T. Feldemann & T. Nõges, 2016. The influence of zooplankton enrichment on the microbial loop in a shallow, eutrophic lake. European Journal of Protistology 52: 22–35.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. R. Schiaffino
    • 1
    Email author
  • N. Diovisalvi
    • 2
  • D. Marfetán Molina
    • 3
  • P. Fermani
    • 2
  • C. Li Puma
    • 1
  • L. Lagomarsino
    • 2
  • M. V. Quiroga
    • 2
  • G. L. Pérez
    • 4
  1. 1.Centro de Investigaciones y transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA-UNSADA)JunínArgentina
  2. 2.Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH)Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)ChascomúsArgentina
  3. 3.Dirección General de Estadística UniversitariaUniversidad Nacional de Rosario (UNR)RosarioArgentina
  4. 4.Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - Centro Científico Tecnológico CONICET - Patagonia NorteBarilocheArgentina

Personalised recommendations