Temperature selection in Brook Charr: lab experiments, field studies, and matching the Fry curve

  • Darren A. Smith
  • Mark S. Ridgway
CHARR III Review Paper


We reviewed the literature pertaining to Brook Charr thermal habitat, one of Fry’s original species used in developing his scope for activity, to determine what guidance may be established for defining thermal habitat from the literature. The literature was surprisingly large, with 53 publications estimating Brook Charr thermal habitat. The laboratory-based optimal temperature estimates varied widely but were far more consistent when only acclimation-controlled studies were considered. Acclimation-controlled estimates of optimal temperature matched the peak of the aerobic scope curve published nearly 70 years ago. Confidence in defining optimal thermal habitat is strengthened for Brook Charr based on this match because the peak in aerobic scope has strong mechanistic links between physiology and thermal ecology. However, laboratory-based studies used only sub-adult Brook Charr and may underrepresent Brook Charr thermal habitat in nature due to ontogenetic differences in thermal preference. Optimal temperature estimates from aerobic scope or acclimation-controlled studies should be used to define thermal habitat boundaries for fish but should be treated with caution if based on sub adults. Population level sampling is needed to determine the generality of these literature-derived boundaries among Brook Charr populations.


Thermal optimum Aerobic scope Salvelinus fontinalis Thermal habitat boundaries Fundamental thermal niche 



The authors thank their colleagues for discussion on various aspects of this review, Michael J. Hansen for edits that greatly improved clarity, and Donald A. Jackson for his suggestions during the literature-review process.


  1. Alofs, K. M., D. A. Jackson & N. P. Lester, 2014. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Diversity and Distributions 20: 123–136.CrossRefGoogle Scholar
  2. Arnell, N., B. Bates, J.J. Magnuson, P.L. Mullholland, S. Fischer, C. Lui, D. McKnight, O. Starosolov & M. Taylor. 1996. Hydrology and Freshwater Ecology. Chapter 10 in Climate Change 1995—Impacts, Adaptations and Mitigations of Climate Change: Scientific and Technical Analysis. Contributions of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change Working Group II. Editors R.T. Watson, M.C. Zinyowera, and R.H. Moss.Google Scholar
  3. Baird, O. E. & C. C. Krueger, 2003. Behavioral thermoregulation of Brook and Rainbow Trout: comparison of summer habitat use in an Adirondack river, New York. Transactions of the American Fisheries Society 132: 1194–1206CrossRefGoogle Scholar
  4. Baldwin, N. S., 1957. Food consumption and growth of Brook Trout at different temperatures. Transactions of the American Fisheries Society 86: 323–328.CrossRefGoogle Scholar
  5. Barton, D. R., W. D. Taylor & R. M. Biette, 1985. Dimensions of riparian buffer strips required to maintain trout habitat in southern Ontario streams. North American Journal of Fisheries Management 5: 364–378.CrossRefGoogle Scholar
  6. Basu, S. P., 1959. Active respiration of fish in relation to ambeient concentrations of oxygen and carbon dioxide. Journal of the Fisheries Research Board of Canada 16: 175–212.CrossRefGoogle Scholar
  7. Beamish, F. W. H., 1964. Respiration of fishes with special emphasis on standard oxygen consumption. Canadian Journal of Zoology 42: 177–188.CrossRefGoogle Scholar
  8. Benfey, T. J., L. E. McCabe & P. Pepin, 1997. Critical thermal maxima of diploid and triploid Brook Charr, Salvelinus fontinalis. Environmental Biology of Fishes 49: 259–264.CrossRefGoogle Scholar
  9. Bertolo, A., M. Pepino, J. Adams & P. Magnan, 2011. Behavioural thermoregulatory tactics in lacustrine Brook Charr, Salvelinus fontinalis. PLoS ONE 6: 1–9.CrossRefGoogle Scholar
  10. Biro, P. A., C. Beckmann & M. S. Ridgway, 2008. Early microhabitat use by age 0 brook charr Salvelinus fontinalis in lakes. Journal of Fish Biology 7: 226–240.CrossRefGoogle Scholar
  11. Bourke, P., P. Magnan & M. A. Rodriguez, 1996. Diel locomotor activity of Brook Charr, as determined by radiotelemetry. Journal of Fish Biology 49: 1174–1185.CrossRefGoogle Scholar
  12. Brandt, S. B., J. J. Magnuson & L. B. Crowder, 1980. Thermal habitat partitioning by fishes in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 37: 1557–1564.CrossRefGoogle Scholar
  13. Brett, J. R., 1941. Tempering versus acclimation in the planting of Speckled Trout. Transactions of the American Fisheries Society 70: 397–403.CrossRefGoogle Scholar
  14. Brett, J. R., 1944. Some lethal temperature relations of Algonquin Park fishes. University of Toronto Studies. Biological Series 52. Published in Ontario Fisheries Research Laboratory 63: 1–49.Google Scholar
  15. Brett, J. R., 1956. Some principles in the thermal requirements of fishes. The Quarterly Review of Biology 31: 75–87.CrossRefGoogle Scholar
  16. Brett, J. R., 1971. Energetic responses of salmon to temperature. A study of some thermal relations in physiology and freshwater ecology of Sockeye Salmon (Oncorhynchus nerka). American Zoologist 11: 99–113.CrossRefGoogle Scholar
  17. Chadwick, J. G. & S. D. McCormick, 2017. Upper thermal limits of growth in brook trout and their relationship to stress physiology. Journal of Experimental Biology 220: 3976–3987.CrossRefGoogle Scholar
  18. Chadwick, Jr, J. G., K. H. Nislow & S. D. McCormick, 2015. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in Brook Trout, an iconic cold-water fish. Conservation Physiology 3(1).Google Scholar
  19. Cherry, D. S., K. L. Dickson & J. Cairns Jr., 1975. Temperatures selected and avoided by fish at various acclimation temperatures. Canadian Journal of Fisheries and Aquatic Sciences 32: 485–491.Google Scholar
  20. Cherry, D. S., K. L. Dickson, J. Cairns Jr & J. R. Stauffer, 1977. Preferred, avoided, and lethal temperatures of fish during rising temperature conditions. Canadian Journal of Fisheries and Aquatic Sciences 34: 239–246.Google Scholar
  21. Chu, C., N. E. Mandrak & C. K. Minns, 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity and Distributions 11: 299–310.CrossRefGoogle Scholar
  22. Comte, L., L. Buisson, M. Daufresne & G. Grenouillet, 2013. Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshwater Biology 58: 625–639.CrossRefGoogle Scholar
  23. Cooper, G. P. & J. L. Fuller, 1945. A biological survey of Moosehead Lake and Haymock Lake, Maine. Maine Dept. of Inland, Fisheries and Game, Fish Survey Report, No. 6, pp. i–vii, 1–160.Google Scholar
  24. Creaser, C. W., 1930. Relative importance of hydrogen-ion concentration, temperature, dissolved oxygen, and carbon-dioxide tension on habitat selection by Brook Trout. Ecology 2: 246–262.CrossRefGoogle Scholar
  25. DeWeber, J. T. & T. Wagner, 2015. Predicting Brook Trout occurrence in stream reaches throughout their native range in the eastern United States. Transactions of the American Fisheries Society 144: 11–24.CrossRefGoogle Scholar
  26. Dwyer, W. P., R. G. Piper & C. E. Smith, 1983. Brook Trout growth efficiency as affected by temperature. The Progressive Fish-Culturist 45: 161–163.CrossRefGoogle Scholar
  27. Eaton, J. G., L. H. McCormick, B. E. Goodno, D. G. O’Brien, H. G. Stefany, M. Hondzo & R. M. Scheller, 1995. A field information-based system for estimating fish temperature tolerances. Fisheries 20: 10–18.CrossRefGoogle Scholar
  28. Eliason, E. J., T. D. Clark, M. J. Hague, L. M. Hanson, Z. S. Gallagher, K. M. Jeffries, M. K. Gale, D. A. Patterson, S. G. Hinch & A. P. Farrell, 2011. Differences in thermal tolerance among sockeye salmon populations. Science 332: 109–112.Google Scholar
  29. Elson, P. F., 1942. Effect of temperature on activity of Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 5: 461–470.Google Scholar
  30. Farrell, A. P., 2009. Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. Journal of Experimental Biology 212: 3771–3780.CrossRefGoogle Scholar
  31. Farrell, A. P., 2016. Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. Journal of Fish Biology 88: 322–343.CrossRefGoogle Scholar
  32. Ferguson, R. G., 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. Canadian Journal of Fisheries and Aquatic Sciences 15: 607–624.Google Scholar
  33. Fisher, K. C. & P. F. Elson, 1950. The selected temperature of Atlantic Salmon and Speckled Trout and the effect of temperature on the response to an electrical stimulus. Physiological Zoology 23: 27–34.CrossRefGoogle Scholar
  34. Flebbe, P. A., L. D. Roghair & J. L. Bruggink, 2006. Spatial modeling to project southern Appalachian trout distribution in a warmer climate. Transactions of the American Fisheries Society 135: 1371–1382.CrossRefGoogle Scholar
  35. Fry, F. E. J., 1947. Effects of the environment on animal activity. University of Toronto Studies. Biological Series 55. Published in Ontario Fisheries Research Laboratory 68: 1–62.Google Scholar
  36. Fry, F. E. J. 1951. Some environmental relations of the Speckled Trout (Salvelinus fontinalis). Proceedings of the North Eastern Atlantic Fisheries Conference 1–29.Google Scholar
  37. Fry, F. E. J., J. J. S. Hart & E. S. Walker, 1946. Lethal temperature relations for a sample of young Speckled Trout, Salvelinus fontinalis. University of Toronto Studies. Biological Series 54. Published in Ontario Fisheries Research Laboratory 66: 1–35.Google Scholar
  38. Galbreath, P. F., N. D. Adams & T. H. Martin, 2004. Influence of heating rate on measurement of time to thermal maximum in trout. Aquaculture 241: 587–599.CrossRefGoogle Scholar
  39. Goyer, K., A. Bertolo, M. Pepino & P. Magnan, 2014. Effects of lake warming on thermoregulatory tactics of a cold-water stenothermic fish. PLoS ONE 9: 1–9.CrossRefGoogle Scholar
  40. Graham, J. M., 1949. Some effects of temperature and oxygen pressure on the metabolism and activity of the Speckled Trout, Salvelinus fontinalis. Canadian Journal of Research. 27D: 270–288.CrossRefGoogle Scholar
  41. Hallam, J. C., 1959. Habitat and associated fauna of four species of fish in Ontario streams. Canadian Journal of Fisheries and Aquatic Sciences 16: 147–173.Google Scholar
  42. Hartman, K. J. & K. M. Cox, 2008. Refinement and testing of a Brook Trout bioenergetics model. Transactions of the American Fisheries Society 137: 357–363.CrossRefGoogle Scholar
  43. Heraldstad, O. & B. Jonsson, 1983. Age and sex segregation in habitat utilization by Brown Trout in a Norwegian Lake. Transactions of the American Fisheries Society 112: 27–37.CrossRefGoogle Scholar
  44. Hockanson, K. E. F., J. H. McCormick, B. R. Jones & J. H. Tucker, 1973. Thermal requirements for maturation, spawning and embryo survival of the Brook Trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 30: 975–984.Google Scholar
  45. Houston, A. H., 1982. Thermal effects upon fishes. Report NRCC No. 18566. National Research Council of Canada. Associate Committee on Scientific Criteria for Environmental Quality.Google Scholar
  46. Hudy, M., T. M. Hanson, N. Gillespie & E. P. Smith, 2008. Distribution, status, and land use characteristics of subwatersheds within the native range of brook trout in the Eastern United States. North American Journal of Fisheries Management 28: 1069–1085.CrossRefGoogle Scholar
  47. Huff, D. D., S. L. Hubler & A. N. Borisenko, 2005. Using field data to estimate the realized thermal niche of aquatic vertebrates. North American Journal of Fisheries Management 25: 346–360.CrossRefGoogle Scholar
  48. Javaid, M. Y. & J. M. Anderson, 1967. Influence of starvation on selected temperature of some salmonids. Canadian Journal of Fisheries and Aquatic Sciences 24: 1515–1519.Google Scholar
  49. Johnson, M. G., 1967. Summer temperature relations in stream-fed ponds in southern Ontario. The Progressive Fish-Culturist 29: 21–26.CrossRefGoogle Scholar
  50. Lee, R. M. & J. N. Rinne, 1980. Critical thermal maxima of five trout species in the southwestern United States. Transactions of the American Fisheries Society 109: 632–635.CrossRefGoogle Scholar
  51. Lund, S. G., M. E. A. Lund & B. L. Tufts, 2003. Red blood cell Hsp 70 mRNA and protein as bioindicators of temperature stress in the Brook Trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences 60: 460–470.CrossRefGoogle Scholar
  52. Magnuson, J. J., L. B. Crowder & P. A. Medvick, 1979. Temperature as an ecological resource. American Zoologist 19: 331–334.CrossRefGoogle Scholar
  53. Magnuson, J. J., J. D. Meisner & D. K. Hill, 1990. Potential changes in the thermal habitat of Great Lakes fish after global climate warming. Transactions of the American Fisheries Society 119: 254–264.CrossRefGoogle Scholar
  54. Magoulick, D. D. & M. A. Wilzbach, 1998. Effect of temperature and macrohabitat on interspecific aggression, foraging success, and growth of Brook Trout and Rainbow Trout pairs in laboratory streams. Transactions of the American Fisheries Society 127: 708–717.CrossRefGoogle Scholar
  55. Martin, R. W. & T. J. Pretty, 2009. Local stream temperature and drainage network topology interact to influence the distribution of Smallmouth Bass and Brook Trout in a central Appalachian watershed. Journal of Freshwater Ecology 24(3): 497–508.CrossRefGoogle Scholar
  56. McCauley, R. W., 1958. Thermal relations of geographic races of Salvelinus. Canadian Journal of Zoology 36: 655–662.CrossRefGoogle Scholar
  57. McCauley, R. W. & N. W. Huggins, 1979. Ontogenetic and non-thermal seasonal effects of thermal preferenda of fish. American Zoologist 19: 267–271.CrossRefGoogle Scholar
  58. McCauley, R. W. & J. S. Tait, 1970. Preferred temperature of yearling Lake Trout, Salvelinus namaycush. Canadian Journal of Fisheries and Aquatic Sciences 27: 1729–1733.Google Scholar
  59. McCormick, J. H., K. E. F. Hockanson & B. R. Jones, 1972. Effects of temperature on growth and survival of young Brook Trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 29: 1107–1112.Google Scholar
  60. McMahon, T. E., A. V. Zale, F. T. Barrows, J. H. Selong & R. J. Danehy, 2007. Temperature and competition between Bull Trout and Brook Trout: a test of the elevation refuge hypothesis. Transactions of the American Fisheries Society 136: 1313–1326.CrossRefGoogle Scholar
  61. Meisner, J. D., 1990a. Effect of climate warming on the southern margins of the native range of Brook Trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 47: 1065–1070.CrossRefGoogle Scholar
  62. Meisner, J. D., 1990b. Potential loss of thermal habitat for Brook Trout, due to climatic warming, in two southern Ontario streams. Transactions of the American Fisheries Society 119: 282–291.CrossRefGoogle Scholar
  63. Morley, J. W., R. L. Seldon, R. J. Latour, T. L. Frölicher, R. J. Seagraves & M. L. Pinsky, 2018. Projecting shifts in thermal habitat for 6876 species on the North American continental shelf. PLoS ONE 13(5): e0196127. Scholar
  64. Muller, R., 1977. Temperature selection of Goldfish (Carassius auratus L.) and Brook Trout (Salvelinus fontinalis Mitch.) after heterogeneous temperature acclimation. Journal of Thermal Biology 2: 5–7.CrossRefGoogle Scholar
  65. Peterson, R. H., 1973. Temperature selection of Atlantic Salmon (Salmo salar) and Brook Trout (Salvelinus fontinalis) as influenced by various chlorinated hydrocarbons. Canadian Journal of Fisheries and Aquatic Sciences 30: 1091–1097.Google Scholar
  66. Peterson, R. H., A. M. Sutterlin & J. L. Metcalfe, 1979. Temperature preference of several species of Salmo and Salvelinus and some of their hybrids. Canadian Journal of Fisheries and Aquatic Sciences 36: 1137–1140.Google Scholar
  67. Pinsky, M. L., B. Worm, M. J. Fogarty, J. L. Sarmiento & S. A. Levin, 2013. Marine taxa track local climate velocities. Science 341: 1239–1242.CrossRefGoogle Scholar
  68. Pörtner, H. O. & A. P. Farrell, 2008. Ecology physiology and climate change. Science 322: 690–692.CrossRefGoogle Scholar
  69. Pörtner, H. O. & R. Knust, 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315: 95–97.CrossRefGoogle Scholar
  70. Pörtner, H. O., P. M. Schulte, C. M. Wood & F. Schiemer, 2010. Niche dimensions in fishes: an integrative view. Physiological and Biochemical Zoology 83(5): 808–826.CrossRefGoogle Scholar
  71. Power, G., 1980. The brook charr, Salvelinus fontinalis. In Balon, E. K. (ed.), Charrs: Salmonid Fishes of the Genus Salvelinus. Dr. W. Junk Publishers, The Hague: 141–203.Google Scholar
  72. Reynolds, W. W. & M. E. Casterlin, 1978. Ontogenetic change in preferred temperature and diel activity of the Yellow Bullhead, Ictalurus natalis. Comparative Biochemistry and Physiology 59A: 409–411.CrossRefGoogle Scholar
  73. Reynolds, W. W. & M. E. Casterlin, 1979. Behavioral thermoregulation and the “final preferendum” paradigm. American Zoologist 19: 211–224.CrossRefGoogle Scholar
  74. Ricker, W., 1934. An ecological classification of certain Ontario streams. University of Toronto Studies. Biological Series 37. Ontario Fisheries Research Laboratory 49: 7–114.Google Scholar
  75. Robinson, J. M., D. C. Josephson, B. C. Weidel & C. E. Kraft, 2010. Influence of variable interannual summer water temperatures on Brook Trout growth, consumption, reproduction, and mortality in an unstratified Adirondack Lake. Transactions of the American Fisheries Society 139: 685–699.CrossRefGoogle Scholar
  76. Schofield, C. L., D. Josephson, C. Keleher & S. P. Gloss, 1993. Thermal stratification of dilute lakes—an evaluation of regulatory processes and biological effects before and after base addition effects: effects on Brook Trout habitat and growth. U.S. Fish and Wildlife Service Biological Report NEC-93/9.Google Scholar
  77. Shuter, B. J., C. K. Minns & N. Lester, 2002. Climate change, freshwater fish, and fisheries: case studies from ontario and their use in assessing potential impacts. American Fisheries Society Symposium 2002: 77–88.Google Scholar
  78. Spigarelli, S. A., 1975. Behavioral responses of Lake Michigan fishes to a nuclear power plant discharge. Environmental Effects of Cooling Systems in Nuclear Power Plants. International Atomic Energy Agency (IAEA), Vienna: 479–498.Google Scholar
  79. Stanfield, L. W., S. F. Gibson & J. A. Borwick, 2006. Using a landscape approach to identify the distribution and density patterns of salmonids in Lake Ontario tributaries. American Fisheries Society Symposium 48: 601–621.Google Scholar
  80. Stitt, B. C., G. Burness, K. A. Burgomaster, S. Currie, J. L. McDermid & C. C. Wilson, 2014. Intraspecific variation in thermal tolerance and acclimation capacity in Brook Trout (Salvelinus fontinalis): physiological implications for climate change. Physiological and Biochemical Zoology 87: 15–29.CrossRefGoogle Scholar
  81. Sullivan, C. M. & K. C. Fisher, 1953. Seasonal fluctuations in the selected temperature of Speckled Trout, Salvelinus fontinalis (Mitchill). Canadian Journal of Fisheries and Aquatic Sciences 10: 187–195.Google Scholar
  82. Sullivan, C. M. & K. C. Fisher, 1954. The effects of light on temperature selection in Speckled Trout Salvelinus fontinalis (Mitchill). Biological Bulletin 107: 278–288.CrossRefGoogle Scholar
  83. Sunday, J. M., A. E. Bates & K. N. Dulvy, 2012. Thermal tolerance and the global redistribution of animals. Nature Climate Change 2: 686–690.CrossRefGoogle Scholar
  84. Wells, Z. R. R., L. H. McDonnel, L. J. Chapman & D. J. Fraser, 2016. Limited variability in upper thermal tolerance among pure and hybrid populations of a cold-water fish. Conservation Physiology 4: 1–13.CrossRefGoogle Scholar
  85. Wherly, K. E., L. Wang & M. Mitro, 2007. Field-based estimates of thermal tolerance limits for trout: incorporating exposure time and temperature fluctuation. Transactions of the American Fisheries Society 136: 365–374.CrossRefGoogle Scholar
  86. Xu, C., B. H. Letcher & K. H. Nislow, 2010. Context-specific influence of water temperature on Brook Trout growth rates in the field. Freshwater Biology 55: 2253–2264.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
  2. 2.Harkness Laboratory of Fisheries Research Aquatic Research and Monitoring Section Trent UniversityPeterboroughCanada

Personalised recommendations