, Volume 830, Issue 1, pp 229–241 | Cite as

Immuno-modulation of settlement cues in the barnacle, Amphibalanus amphitrite: significance of circulating haemocytes

  • Lidita KhandeparkerEmail author
  • A. C. Anil
  • Dattesh V. Desai
Primary Research Paper


Gregarious settlement in barnacles has been attributed to chemical cues originating from the associated microorganisms, lectins, and settlement-inducing protein complex from arthropodin, a glycoprotein present in their conspecifics/adults. In this study, we explored the influence of haemolymph haemocytes on the metamorphosis of barnacle, Amphibalanus amphitrite cyprids. The barnacle haemocytes were also characterized for the first time using flow cytometry. Cyprid metamorphosis was significantly higher in the presence of surface-bound haemocytes compared to water-borne cues from haemolymph or adult glycoprotein, a known settlement inducer. The flow cytometry-assisted haemocyte characterization, sorting and their subsequent microscopic evaluation indicated the presence of hyalinocytes and granulocytes. Tagging of these haemocytes with lectins revealed that a significant number of haemocytes had d-glucose/d-mannose and N-acetyl-d-galactosamine, which are important settlement cues. These glycoconjugates were also detected in the cyprid larva pointing out the origin of conspecific cues. The retention of these glycoconjugates in the adult haemocytes and their occurrence in adult leachants indicate pelago-benthic coupling in sessile barnacles wherein these glycoconjugates play a significant role in their gregarious settlement. Characterization of such a coupling process in other sessile benthic invertebrates will pave the way to the understanding of complexities in their population dynamics.


Amphibalanus amphitrite Glycoconjugates Haemocytes Immuno-modulation Flow cytometry Lectins Settlement cues 



We thank the Director of CSIR-National Institute of Oceanography for providing the facilities and support. This work was supported by the Council of Scientific and Industrial Research (CSIR)-funded Ocean Finder Program (PSC0105). This is NIO contribution 6332.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2018_3868_MOESM1_ESM.mp4 (124 kb)
File 1. A video showing the Z sectioning of the cyprid stained with FITC conjugated Concanavalin and TRITC conjugated Glycine max. Both the lectins show identical binding sites in the vicinity of the nervous system. Supplementary material 1 (AVI 125 kb)


  1. Aldred, N., A. Alsaab & A. S. Clare, 2018. Quantitative analysis of the complete larval settlement process confirms Crisp’s model of surface selectivity by barnacles. Proceedings of the Royal Society Series B 285(1872): 20171957.CrossRefGoogle Scholar
  2. Amirante, G. A., 1986. Cellular immune responses in crustaceans. In Gupta, A. P. (ed.), Hemocytic and humoral immunity in arthropods. Wiley, New York: 61–75.Google Scholar
  3. Anil, A. C., K. Chiba, K. Okamoto & K. Kurokura, 1995. Influence of temperature and salinity on the larval development of Balanus amphitrite: implications in the fouling ecology. Marine Ecology Progress Series 118: 159–166.CrossRefGoogle Scholar
  4. Armstrong, E., L. Yan, K. G. Boyd, P. C. Wright & J. G. Burgess, 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37–40.CrossRefGoogle Scholar
  5. Battistella, S., P. Bonivento & G. A. Amirante, 1996. Hemocytes and immunological reactions in crustaceans. Italian Journal of Zoology 63: 337–343.CrossRefGoogle Scholar
  6. Berg, J. M., J. L. Tymoczko & L. Stryer, 2002. In Biochemistry 5th edition. The Immune System, Chapter 33. W H Freeman, New York.Google Scholar
  7. Cardenas, W., J. R. Dankert & J. A. Jenkins, 2004. Flow cytometric analysis of crayfish hemocytes activated by lipopolysaccharides. Fish and Shellfish Immunology 17: 223–233.CrossRefGoogle Scholar
  8. Clare, A. S. & K. Matsumura, 2000. Nature and perception of barnacle settlement pheromones. Biofouling 15: 57–71.CrossRefGoogle Scholar
  9. De Bacchetti, G. T., L. Khandeparker, A. C. Anil, E. Mesbahi, J. Burgess & A. S. Clare, 2012. Characterisation of the bacteria associated with barnacle, Balanus amphitrite, shell and their role in gregarious settlement of cypris larvae. Journal of Experimental Marine Biology and Ecology 413: 7–12.CrossRefGoogle Scholar
  10. Desai, D. V. & A. C. Anil, 2002. Comparison of nutritional status of field and laboratory reared Balanus amphitrite Darwin (Cirripedia: Thoracica) larvae and implication of starvation. Journal of Experimental Marine Biology and Ecology 280: 117–134.CrossRefGoogle Scholar
  11. Desai, D. V. & A. C. Anil, 2005. Recruitment of the barnacle Balanus amphitrite in a tropical estuary: implications of environmental perturbation, reproduction and larval ecology. Journal of the Marine Biological Association of the United Kingdom 85: 909–920.CrossRefGoogle Scholar
  12. Dickinson, G. H., I. E. Vega, K. J. Wahl, B. Orihuela, V. Beyley, E. N. Rodriguez, R. K. Everett, J. Bonaventura & D. Rittschof, 2009. Barnacle cement: a polymerization model based on evolutionary concepts. Journal of Experimental Biology 212: 3499–3510.CrossRefGoogle Scholar
  13. Dreanno, C., K. Matsumura, N. Dohmae, K. Takio, H. Hirota, R. R. Kirby & A. S. Clare, 2006a. A novel α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proceedings of the National Academy of Sciences of the United States of America 103(39): 14396–14401.CrossRefGoogle Scholar
  14. Dreanno, C., R. R. Kirby & A. S. Clare, 2006b. Locating the barnacle settlement pheromone: spatial and ontogenetic expression of the settlement-inducing protein complex of Balanus amphitrite. Proceedings of the Royal Society B: Biological Sciences 273(1602): 2721–2728.CrossRefGoogle Scholar
  15. Dobretsov, S., H. U. Dahms & P. Y. Qian, 2006. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22: 43–54.CrossRefGoogle Scholar
  16. Eswaran, R. & L. Khandeparker, 2014. Algal epibiosis on Megabalanus tintinnabulum and its role in segregation of the Balanus amphitrite population. Marine Ecology 35: 492–505.CrossRefGoogle Scholar
  17. Fujii, S., T. Nishiura, A. Nishikawa, R. Miura & N. Taniguchi, 1990. Structural heterogeneity of sugar chains in immunoglobulin G. Conformation of immunoglobulin G molecule and substrate specificities of glycosyltransferases. Journal of Biological Chemistry 265: 6009–6018.PubMedGoogle Scholar
  18. Hose, J. E., G. G. Martin & A. S. Gerard, 1990. A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. Biological Bulletin 178: 33–45.CrossRefGoogle Scholar
  19. Hung, O. S., V. Thiyagarajan & P. Y. Qian, 2008. Preferential attachment of barnacle larvae to natural multi-species biofilms: does surface wettability matter? Journal of Experimental Marine Biology and Ecology 361: 36–41.CrossRefGoogle Scholar
  20. Ivanina, A. V., H. I. Falfushynska, E. Beniash, H. Piontkivska & I. M. Sokolova, 2017. Biomineralization-related specialization of hemocytes and mantle tissues of the Pacific oyster Crassostrea gigas. Journal of Experimental Biology 220: 3209–3221.CrossRefGoogle Scholar
  21. Jiravanichpaisal, P., B. L. Lee & K. Söderhäll, 2006. Cell mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211: 213–236.CrossRefGoogle Scholar
  22. Johansson, M. W. & K. Söderhäll, 1989. Cellular immunity in crustaceans and the proPO system. Parasitology Today 5: 171–176.CrossRefGoogle Scholar
  23. Johansson, M. W., P. Keyser, K. Sritunyalucksana & K. Söderhäll, 2000. Crustacean hemocytes and haematopoiesis. Aquaculture 191: 45–52.CrossRefGoogle Scholar
  24. Kamino, K., 2010. Absence of cross-linking via trans-glutaminase in barnacle cement and redefinition of the cement. Biofouling 26(7): 755–760.CrossRefGoogle Scholar
  25. Kamiya, H., K. Muramoto & R. Goto, 1987. Isolation and characterization of agglutinins from the hemolymph of an acorn barnacle, Megabalanus volcano. Development and Comparative Immunology 11(2): 297–307.CrossRefGoogle Scholar
  26. Kamiya, H., M. Jimbo, H. Yako, K. Muramoto, O. Nakamura, R. Kado & T. Watanabe, 2002. Participation of the C-type hemolymph lectin in mineralization of the acorn barnacle Megabalanus rosa. Marine Biology 140: 1235–1240.CrossRefGoogle Scholar
  27. Kato-Yoshinaga, Y., M. Nagano, S. Moris, A. S. Clare, N. Fusetani & K. Matsumura, 2000. Species specificity of barnacle settlement-inducing proteins. Comparative Biochemistry and Physiology A 125(4): 511–516.CrossRefGoogle Scholar
  28. Khandeparker, L. & A. C. Anil, 2011. Role of conspecific cues and sugars in the settlement of cyprids of the barnacle, Balanus amphitrite. Journal of Zoology 284(3): 206–214.CrossRefGoogle Scholar
  29. Khandeparker, L., A. C. Anil & S. Raghukumar, 2002a. Factors regulating the production of different inducers in Pseudomonas aeruginosa with reference to larval metamorphosis in Balanus amphitrite. Aquatic Microbial Ecology 28: 37–54.CrossRefGoogle Scholar
  30. Khandeparker, L., A. C. Anil & S. Raghukumar, 2002b. Exploration and metamorphosis in Balanus amphitrite Darwin (Cirripedia;Thoracica) cyprids: significance of sugars and adult extract. Journal of Experimental Marine Biology and Ecology 281: 77–88.CrossRefGoogle Scholar
  31. Khandeparker, L., A. C. Anil & S. Raghukumar, 2003. Barnacle larval destination: piloting possibilities by bacteria and lectin interaction. Journal of Experimental Marine Biology and Ecology 289(1): 1–13.CrossRefGoogle Scholar
  32. Khandeparker, L., A. C. Anil & S. Raghukumar, 2006. Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite. FEMS Microbiology Ecology 58(3): 425–438.CrossRefGoogle Scholar
  33. Kirchman, D., S. Graham, D. Reish & R. Mitchell, 1982. Bacteria induce settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). Journal of Experimental Marine Biology and Ecology 56: 153–163.CrossRefGoogle Scholar
  34. Larman, V. N., P. A. Gabbott & J. East, 1982. Physico-chemical properties of the settlement factor proteins from the barnacle Balanus balanoides. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology 72: 329–338.CrossRefGoogle Scholar
  35. Liener, I. E., N. Sharon & I. J. Goldstein, 1986. The Lectins: Properties, Functions, and Applications in Biology and Medicine. Academic Press, Orlando.Google Scholar
  36. Lowry, O. H., N. J. Rosebrough, A. L. Farr & R. J. Randall, 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193: 265–275.PubMedGoogle Scholar
  37. Maruzzo, D., N. Aldred, A. S. Clare & J. T. Høeg, 2012. Metamorphosis in the cirripede crustacean Balanus amphitrite. PLoS ONE 7(5): e37408.CrossRefGoogle Scholar
  38. Maki, J. S., D. Rittschof & R. Mitchell, 1992. Inhibition of larval barnacle attachment to bacterial films: an investigation of physical properties. Microbial Ecology 23: 97–106.CrossRefGoogle Scholar
  39. Matsumura, K., M. Nagano & N. Fusetani, 1998a. Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite. Journal of Experimental Zoology 281: 12–20.CrossRefGoogle Scholar
  40. Matsumura, K., M. Nagano, Y. Kato-Yoshinaga, M. Yamazaki, A. S. Clare & N. Fusetani, 1998b. Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactions. Proceedings of the Royal Society of London. Series B 265: 1825–1830.Google Scholar
  41. Mizuochi, T., T. Taniguchi, A. Shimizu & A. Kobata, 1982. Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. Journal of Immunology 129: 2016–2020.Google Scholar
  42. Owens, L. & A. O’Neill, 1997. Use of a clinical flow cytometer for differential counts of prawn Penaeus monodon hemocytes. Diseases of Aquatic Organisms 31: 147–153.CrossRefGoogle Scholar
  43. Qian, P. Y., V. Thiyagarajan, S. C. K. Lau & S. C. K. Cheung, 2003. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquatic Microbial Ecology 33: 225–237.CrossRefGoogle Scholar
  44. Raju, T. S., J. B. Briggs, S. M. Borge & A. J. Jones, 2000. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5): 477–486.CrossRefGoogle Scholar
  45. Relf, J. M., J. R. F. Chisholm, G. D. Kemp & V. J. Smith, 1999. Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular hemocytes of the shore crab, Carcinus maenas. European Journal of Biochemistry 264: 350–357.CrossRefGoogle Scholar
  46. Rittschof, D. & J. H. Cohen, 2004. Crustacean peptide and peptide-like pheromones and kairomones. Peptides 25: 1503–1516.CrossRefGoogle Scholar
  47. Rittschof, D., E. S. Branscomb & J. D. Costlow, 1984. Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. Journal of Experimental Marine Biology and Ecology 82: 131–146.CrossRefGoogle Scholar
  48. Sahoo, G. & L. Khandeparker, 2018. Role of epibiotic diatoms isolated from the barnacle shell in the cyprid metamorphosis of Balanus amphitrite. Hydrobiologia. Scholar
  49. Shapiro, H. M., 2003. Practical flow cytometry. Wiley, Hoboken, New Jersey.CrossRefGoogle Scholar
  50. Shibuya, N., I. J. Goldstein, E. J. M. Van Damme & W. J. Peumans, 1988. Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. The Journal of Biological Chemistry 263(2): 728–734.PubMedGoogle Scholar
  51. Söderhäll, K. & V. J. Smith, 1983. Separation of the haemocyte population of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Development and Comparative Immunology 7: 229–239.CrossRefGoogle Scholar
  52. Sutton, B. J. & D. C. Phillips, 1983. The three-dimensional structure of the carbohydrate within the Fc fragment of immunoglobulin G. Biochemical Society Transactions 11: 130–132.CrossRefGoogle Scholar
  53. Travers, M. A., P. M. da Silva, N. LeGoic, D. Mavie, A. Donual, S. Huchette, M. Koken & C. Paillard, 2008. Morphologic, cytometric and functional characterization of abalone (Haliotis tuberculata) hemocytes. Fish and Shellfish Immunology 24: 400–411.CrossRefGoogle Scholar
  54. Unabia, C. R. C. & M. G. Hadfield, 1999. Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans. Marine Biology 133: 55–64.CrossRefGoogle Scholar
  55. Waite, M. E. & G. Walker, 1988. The hemocytes of balanomorph barnacles. Journal of Marine Biological Association of United Kingdom 68: 391–397.CrossRefGoogle Scholar
  56. White, K. N. & G. Walker, 1981. Uptake, accumulation and excretion of zinc by the barnacle, Balanus balanoides (L.). Journal of Experimental Marine Biology and Ecology 51(2–3): 285–298.CrossRefGoogle Scholar
  57. Walmsley, T. A., G. F. Matcher, F. Zhang, R. T. Hill, M. T. Davies-Coleman & R. A. Dorrington, 2012. Diversity of bacterial communities associated with the Indian Ocean sponge Tsitsikamma favus that contains the bioactive Pyrroloiminoquinones, Tsitsikammamine A and B. Marine Biotechnology 14: 681–691.CrossRefGoogle Scholar
  58. Wang, Y., M. Hu, Q. Li, J. Li, D. Lin & W. Lu, 2014. Immune toxicity of TiO 2 under hypoxia in the green-lipped mussel Perna viridis based on flow cytometric analysis of hemocyte parameters. Science of the Total Environment 470: 791–799.CrossRefGoogle Scholar
  59. Xue, Q. G., T. Renault & S. Chilmonczyk, 2001. Flow cytometric assessment of haemocyte sub-populations in the European flat oyster, Ostrea edulis, hemolymph. Fish and Shellfish Immunology 11: 557–567.CrossRefGoogle Scholar
  60. Yamamoto, K., Y. Konami & T. Irimura, 1997. Sialic acid-binding motif of Maackia amurensis lectins. The Journal of Biochemistry 121(4): 756–761.CrossRefGoogle Scholar
  61. Zar, J. H., 1996. Biostatistical analysis, 3rd ed. Prentice-Hall Inc., Upper Saddle River, New Jersey.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lidita Khandeparker
    • 1
    Email author
  • A. C. Anil
    • 1
  • Dattesh V. Desai
    • 1
  1. 1.CSIR-National Institute of Oceanography, Council of Scientific and Industrial ResearchDona Paula GoaIndia

Personalised recommendations