On the origin of endemic stone charr in the Kamchatka River basin

  • Alla G. OleinikEmail author
  • Lubov A. Skurikhina
  • Andrey D. Kukhlevsky
  • Evgeniia I. Bondar


The Kamchatka River basin (Kamchatka Peninsula, Russia) is populated by numerous anadromous and resident forms of charr, Salvelinus, including the endemic stone charr, a specialized predator that inhabits the river and its tributaries along with the Northern Dolly Varden. Nucleotide sequences of the entire gene sequence of cytochrome b and cytochrome c oxidase-1, control region and locus of the lactate dehydrogenase gene (LDH-C1) were used for analysis of stone charr differentiation and its phylogenetic relationships with other representatives of the Bering group (Northern Dolly Varden S. malma malma and white charr S. albus). The ratio of within- to between-population divergence of mtDNA nucleotide sequences was analogous to that previously reported for S. malma malma populations. The genealogy of mtDNA haplotypes and analysis of LDH-C1 gene confirms the affinity of stone charr and white charr to the Northern Dolly Varden phylogenetic group. Two divergent mtDNA lineages have been identified in the Kamchatka River basin, with stone charr and white charr being the main carriers of the haplotypes of a new identified group in this region. Evidence has been obtained for the common origin of stone charr from the Kamchatka River basin and Northern Dolly Varden from the Chukchi Peninsula and Alaska.


Salvelinus Mitochondrial DNA mtDNA Northern Dolly Varden White charr Genealogy 



We dedicate this article to the memory of the outstanding ichthyologist, our colleague and friend Igor Alexandrovich Chereshnev. Our deep appreciation is extended to V. A. Parensky (National Scientific Center of Marine Biology (NSCMB), FEB RAS) for providing two specimens of stone charr. We thank our colleagues S. V. Frolov (NSCMB FEB RAS) for providing the charr specimens from lakes Achchen and Nachikinskoe and from the Kamchatka, Paratunka, Raduga rivers, T. V. Malinina (Vavilov Institute of General Genetics, RAS, Moscow) for the specimens from the Taimyr Peninsula, P. K. Gudkov (deceased) for the specimens from Lake Sitasjaure, and P. A. Crane (Conservation Genetics Laboratory, 1011 E. Tudor Rd, Anchorage, Alaska, United States) for the specimens from the Frosty Creek, Kongakut River, and Floods Pond. We are also grateful to Tania Koznova (NSCMB FEB RAS) for her help in manuscript preparation, as well as to three anonymous reviewers for the valuable comments on the manuscript.


This study was financially supported in part by the Presidium of the Far Eastern Branch, Russian Academy of Sciences (Grant no. 18-4-042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2018_3867_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)


  1. Balakirev, E. S., V. A. Parensky, M. Y. Kovalev & F. J. Ayala, 2015. Complete mitochondrial genome of the white char Salvelinus albus (Salmoniformes, Salmonidae). Mitochondrial DNA (Part A) 27: 3753–3754.CrossRefGoogle Scholar
  2. Balakirev, E. S., V. A. Parensky, M. Y. Kovalev & F. J. Ayala, 2016a. Complete mitochondrial genome of the stone char Salvelinus kuznetzovi (Salmoniformes, Salmonidae). Mitochondrial DNA (Part B) 1: 287–288.CrossRefGoogle Scholar
  3. Balakirev, E. S., N. C. Romanov & F. J. Ayala, 2016b. Complete mitochondrial genome of the Northern (Salvelinus malma) and Southern (Salvelinus curilus) Dolly Varden chars (Salmoniformes, Salmonidae). Mitochondrial DNA (Part A) 27: 1016–1017.CrossRefGoogle Scholar
  4. Bandelt, H.-J., P. Foster & A. Rohl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.CrossRefGoogle Scholar
  5. Barr, I. D. & O. Solomina, 2014. Pleistocene and Holocene glacier fluctuations upon the Kamchatka Peninsula. Global and Planetary Change 113: 110–120.CrossRefGoogle Scholar
  6. Bogutskaya, N. G. & A. M. Naseka, 2004. Catalogue of agnathans and fishes of fresh and brackish waters of Russia with comments on nomenclature and taxonomy. KMK Scientific Press, Moscow (in Russian).Google Scholar
  7. Brigham-Grette, J., 2001. New perspectives on Beringian quaternary paleogeography, stratigraphy, and glacial history. Quaternary Science Reviews 20: 15–24.CrossRefGoogle Scholar
  8. Brunner, P. C., M. R. Douglas, A. Osinov, C. C. Wilson & L. Bernatchez, 2001. Holarctic phylogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55: 573–586.CrossRefGoogle Scholar
  9. Chereshnev, I. A., 1998. Biogeography of Freshwater Fishes in the Far East of Russia. Dal’nauka Press, Vladivostok (in Russian).Google Scholar
  10. Chereshnev, I. A., V. V. Volobuev, A. V. Shestakov & S. V. Frolov, 2002. Salmonoid fishes in Russian North-East. Dal’nauka Press, Vladivostok (in Russian).Google Scholar
  11. Crête-Lafrenière, A., L. K. Weir & L. Bernatchez, 2012. Framing the Salmonidae family phylogenetic portrait: a more comprehensive picture from increased taxon sampling. PLoS ONE 7: e46662.CrossRefGoogle Scholar
  12. Doiron, S., L. Bernatchez & P. Blier, 2002. A comparative genomics analysis of the potential adaptative value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Molecular Biology and Evolution 19: 1902–1909.CrossRefGoogle Scholar
  13. Esin, E. V. & G. N. Markevich, 2017. Charrs of the genus Salvelinus of Asian North Pacific: origin, evolution and modern diversity. Kamchatpress, Moscow (in Russian).Google Scholar
  14. Esin, E. V., G. N. Markevich & N. O. Melnik, 2017. Morphological characteristic of the stone charr (Salvelinus, Salmonidae) from the Kamchatka River basin. Proceedings of the Kronotsky Nature Reserve 5: 13–25 (in Russian).Google Scholar
  15. Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  16. Glubokovskii, M. K., 1977. Taxonomic relationships of chars of the genus Salvelinus in the Basin of the Kamchatka River. The Soviet Journal of Marine Biology 3: 24–35.Google Scholar
  17. Glubokovsky, M. K., 1995. Evolutionary biology of salmonid fishes. Nauka, Moscow (in Russian).Google Scholar
  18. Hutchison, D. W. & A. R. Templeton, 1999. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53: 1898–1914.CrossRefGoogle Scholar
  19. Kumar, S., G. Stecher & K. Tamura, 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.CrossRefGoogle Scholar
  20. McMeel, O. M., E. M. Hoey & A. Ferguson, 2001. Partial nucleotide sequences, and routine typing by polymerase chain reaction – restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles. Molecular Ecology 10: 29–34.CrossRefGoogle Scholar
  21. Moore, J.-S., R. Bajno, J. D. Reist & E. B. Taylor, 2015. Post-glacial recolonization of the North American Arctic by Arctic char (Salvelinus alpinus): genetic evidence of multiple northern refugia and hybridization between glacial lineages. Journal of Biogeography 42: 2089–2100.CrossRefGoogle Scholar
  22. Nei, M. & S. Kumar, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.Google Scholar
  23. Oleinik, A. G. & L. A. Skurikhina, 2010. Mitochondrial DNA diversity and relationships of endemic charrs of the genus Salvelinus from lake Kronotskoye (Kamchatka Penisula). Hydrobiologia 650: 145–159.CrossRefGoogle Scholar
  24. Oleinik, A. G., L. A. Skurikhina & V. A. Brykov, 2010. Genetic divergence of the Salvelinus albus and Salvelinus malma malma mitochondrial DNA. Russian Journal of Genetics 46: 345–355.CrossRefGoogle Scholar
  25. Oleinik, A. G., L. A. Skurikhina & V. A. Brykov, 2011. Population genetic structure of Northern Dolly Varden char Salvelinus malma malma in Asia and North America. Russian Journal of Genetics 47: 1456–1467.CrossRefGoogle Scholar
  26. Oleinik, A. G., L. A. Skurikhina, E. I. Bondar & V. A. Brykov, 2014. Phylogeography of northern Dolly Varden Salvelinus malma malma based on analysis of mitochondrial DNA. Journal of Zoological Systematics and Evolutionary Research 52: 293–304.CrossRefGoogle Scholar
  27. Oleinik, A. G., L. A. Skurikhina & V. A. Brykov, 2015. Phylogeny of charrs of the genus Salvelinus based on mitochondrial DNA data. Russian Journal of Genetics 51: 55–68.CrossRefGoogle Scholar
  28. Oleinik, A. G., L. A. Skurikhina & A. D. Kukhlevsky, 2017a. The lactate dehydrogenase gene LDH-C1, a new molecular marker for phylogenetic analysis of salmonid fishes (Salmoniformes: Salmonidae). Russian Journal of Marine Biology 43: 499–502.CrossRefGoogle Scholar
  29. Oleinik, A. G., L. A. Skurikhina, A. D. Kukhlevsky & E. I. Bondar, 2017b. Genetic relationships of Chukchi charr Salvelinus andriashevi and Taranetz charr Salvelinus taranetzi. Russian Journal of Genetics 53: 1137–1145.CrossRefGoogle Scholar
  30. Osinov, A. G., 1999. The Dolly Varden (Salvelinus malma) of Eurasia and the chars of the Kamchatka river basin: data from allozyme analysis. International Society of Arctic Char Fanatics Information Series 7: 173–181.Google Scholar
  31. Osinov, A. G. & S. D. Pavlov, 1998. Allozyme variation and genetic divergence between populations of Arctic charr and Dolly Varden (Salvelinus alpinusSalvelinus malma complex). Journal of Ichthyology 38: 42–55.Google Scholar
  32. Osinov, A. G., A. L. Senchukova, N. S. Mugue, S. D. Pavlov & I. A. Chereshnev, 2015. Speciation and genetic divergence of three species of charr from ancient Lake El’gygytgyn (Chukotka) and their phylogenetic relationships with other representatives of the genus Salvelinus. Biological Journal of the Linnean Society 116: 63–85.CrossRefGoogle Scholar
  33. Pavlov, S. D. & K. A. Savvaitova, 1991. The stone char of the Kamchatka River. International Society of Arctic Char Fanatics Information Series 5: 131–134.Google Scholar
  34. Radchenko, O. A., E. A. Salmenkova & V. T. Omel’chenko, 2006. Variation of cytochrome b gene in sympatric chars from Kronotsky Lake (Kamchatka Peninsula). Russian Journal of Genetics 42: 172–181.CrossRefGoogle Scholar
  35. Rozas, J., A. Ferrer-Mata, J. C. Sánchez-DelBarrio, S. Guirao-Rico, P. Librado, S. E. Ramos-Onsins & A. Sánchez-Gracia, 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution 34: 3299–3302.CrossRefGoogle Scholar
  36. Saitou, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.PubMedGoogle Scholar
  37. Salmenkova, E. A., 2016. Genetic connectivity between sympatric populations of closely related char species, Dolly Varden Salvelinus malma and white char Salvelinus albus. Russian Journal of Genetics 52: 74–78.CrossRefGoogle Scholar
  38. Savvaitova, K. A., 1989. Arctic Charrs (Structure of Population Systems, Perspectives of Economic use). Agropromizdat, Moscow (in Russian).Google Scholar
  39. Savvaitova, К. A. & V. A. Maksimov, 1970. Stone char from the Kamchatka River basin. Nauchnyye Doklady Vysshey Shkoly. Biological sciences 5: 7–20 (in Russian).Google Scholar
  40. Shafer, A. A., C. I. Cullingham, S. D. Côté & D. W. Coltman, 2010. Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Molecular Ecology 19: 4589–4621.CrossRefGoogle Scholar
  41. Slatkin, M. & R. R. Hudson, 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555–562.PubMedPubMedCentralGoogle Scholar
  42. Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.PubMedGoogle Scholar
  43. Taranetz, A. Ya., 1933. Some new freshwater fishes from the Far Eastern region. Doklady Akademii Nauk, SSSR 2: 83–85.Google Scholar
  44. Taylor, E. B., 2015. Arctic char (Salvelinus alpinus) “complex” in North America revisited. Hydrobiologia 650: 145–159.Google Scholar
  45. Taylor, E. B. & S. L. May-McNally, 2015. Genetic analysis of Dolly Varden (Salvelinus malma) across its North American range: evidence for a contact zone in southcentral Alaska. Canadian Journal of Fisheries and Aquatic Sciences 72: 1048–1057.CrossRefGoogle Scholar
  46. Uiblein, F., A. Jagsch, W. Honsig-Erlenburg & S. Weiss, 2001. Status, habitat use, and vulnerability of the European grayling in Austrian waters. Journal of Fish Biology 59 (Supple. A): 223-247.Google Scholar
  47. Vasil’ev, V. P., 1985. Evolutionary karyology of fishes. Nauka, Moscow (in Russian).Google Scholar
  48. Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. Hebert, 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360: 1847–1857.CrossRefGoogle Scholar
  49. Yamamoto, S., S. Kitano, K. Maekawa, I. Koizumi & K. Morita, 2006. Introgressive hybridization between Dolly Varden Salvelinus malma and white-spotted charr Salvelinus leucomaenis on Hokkaido Island, Japan. Journal of Fish Biology 68: 68–85.CrossRefGoogle Scholar
  50. Yamamoto, S., K. Maekawa, K. Morita, P. A. Crane & A. G. Oleinik, 2014. Phylogeography of the salmonid fish, Dolly Varden Salvelinus malma: multiple glacial refugia in the North Pacific Rim. Zoological Science 31: 660–671.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Scientific Center of Marine Biology FEB RAS (A. V. Zhirmunsky Institute of Marine Biology)VladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations