The association between parasite infection and growth rates in Arctic charr: do fast growing fish have more parasites?

  • Eirik H. HenriksenEmail author
  • Aslak Smalås
  • John F. Strøm
  • Rune Knudsen


Trophically transmitted parasites are known to impair fish growth in experimental studies, but this is not well documented in natural populations. For Arctic charr [Salvelinus alpinus (L.)], individual growth is positively correlated with food consumption. However, increased food consumption will increase the exposure to trophically transmitted parasites. Using a correlative approach, we explore the association between parasite abundance and the individual growth of Arctic charr from five lakes within the same watercourse. The studied parasite species differ in their life cycles and cost to the host. We predicted a positive association between parasite abundance and fish growth for parasites of low pathogenicity reflecting high consumption rates, and a negative association at higher parasite abundances for more costly parasites. We found no direct negative associations between parasite abundance and fish growth. The relationship between parasite abundance and growth was linearly positive for the low costly Crepidostomum sp. and concave for the more costly Eubothrium salvelini. In natural fish populations, the negative effects of parasites on fish growth might be outweighed by the energy assimilated from feeding on the intermediate host. However, experimental studies with varying food consumption regimes are needed to determine the mechanisms underlying our observations.


Trophic transmission Fish growth Salvelinus alpinus Host–parasite interactions 



We thank the following people for field sampling and/or laboratory work: P. A. Amundsen, M. S. Berg, C. Bye, L. Dalsbø, A. P. Eloranta, K. Ø. Gjelland, M. Gabler, B. S. Knudsen, R. Kristoffersen, J. A. Kuhn, K. Johannessen, and K. J. O’Connor. Two anonymous reviewers provided helpful and constructive comments.


  1. Alvarez-Pellitero, P., 2008. Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Veterinary Immunology and Immunopathology 126: 171–198.CrossRefGoogle Scholar
  2. Amundsen, P. A., H. M. Gabler & F. J. Staldvik, 1996. A new approach to graphical analysis of feeding strategy from stomach contents data—modification of the Costello (1990) method. Journal of Fish Biology 48: 607–614.Google Scholar
  3. Amundsen, P.-A., R. Knudsen, A. M. Kuris & R. Kristoffersen, 2003. Seasonal and ontogenetic dynamics in trophic transmission of parasites. Oikos 2: 285–293.CrossRefGoogle Scholar
  4. Amundsen, P.-A., R. Knudsen & A. Klemetsen, 2007. Intraspecific competition and density dependence of food consumption and growth in Arctic charr. The Journal of Animal Ecology 76: 149–158.CrossRefGoogle Scholar
  5. Awachie, J. B., 1968. On the bionomics of Crepidostomum metoecus (Braun, 1900) and Crepidostomum farionis (Müller, 1784) (Trematoda: Allocreadiidae). Parasitology 58: 307–324.CrossRefGoogle Scholar
  6. Barber, I., S. A. Arnott, V. A. Braithwaite, J. Andrew & F. A. Huntingford, 2001. Indirect fitness consequences of mate choice in sticklebacks: offspring of brighter males grow slowly but resist parasitic infections. Proceedings of the Royal Society B 268: 71–76.CrossRefGoogle Scholar
  7. Barber, I., H. A. Wright, S. A. Arnott & R. J. Wootton, 2008. Growth and energetics in the stickleback-Schistocephalus host parasite system: a review of experimental infection studies. Behaviour 145: 4–5.Google Scholar
  8. Bell, G. & A. Burt, 1991. The comparative biology of parasite species diversity: internal helminths of freshwater fish. The Journal of Animal Ecology 60: 1047–1064.CrossRefGoogle Scholar
  9. Blanar, C. A., M. A. Curtis & H. M. Chan, 2005. Growth, nutritional composition, and hematology of Arctic charr (Salvelinus alpinus) exposed to toxaphene and tapeworm (Diphyllobothrium dendriticum) larvae. Archives of Environmental Contamination and Toxicology 48: 397–404.CrossRefGoogle Scholar
  10. Boyce, N. P. J., 1974. Biology of Eubothrium salvelini (Cestoda: Pseudophyllidea), a parasite of juvenile sockeye salmon (Oncorhynchus nerka) of Babine Lake, British Columbia. Journal of the Fisheries Board of Canada 31: 1735–1742.CrossRefGoogle Scholar
  11. Boyce, N. P., 1979. Effects of Eubothrium salvelini (Cestoda: Pseudophyllidea) on the growth and vitality of sockeye salmon, Oncorhynchus nerka. Canadian Journal of Zoology 57: 597–602.CrossRefGoogle Scholar
  12. Bristow, G. A. & B. Berland, 1991. The effect of long-term, low-level Eubothrium sp. (Cestoda, Pseudophyllidea) infection in farmed salmon (Salmo salar L.). Aquaculture 98: 325–330.CrossRefGoogle Scholar
  13. Bush, A. O., K. D. Lafferty, J. M. Lotz, A. W. Shostak, et al., 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83: 575–583.CrossRefGoogle Scholar
  14. Bylund, G., 1972. Pathogenic effects of a Diphyllobothriid plerocercoid on its host fishes. Commentationes Biologicae. Societas Scientiarum Fennica, Helsinki: 58.Google Scholar
  15. Curtis, M. A., 1984. Diphyllobothrium spp. and the Arctic charr: parasite acquisition and its effects on a lake-resident population. In Johnson, L. & B. I. Burns (eds), Biology of the Arctic charr., Proceedings of the International Symposium on a Arctic charr, Winnipeg, Manitoba University of Manitoba Press, Winnipeg: 395–411.Google Scholar
  16. des Clers, S., 1991. Functional relationship between sealworm (Pseudoterranova decipiens, Nematoda, Ascaridoidea) burden and host size in Atlantic cod (Gadus morhua). Proceedings of the Royal Society B 245: 85–89.CrossRefGoogle Scholar
  17. Dezfuli, B. S., G. Bosi, J. A. DePasquale, M. Manera & L. Giari, 2016. Fish innate immunity against intestinal helminths. Fish and Shellfish Immunology 50: 274–287.CrossRefGoogle Scholar
  18. Dobson, A., K. D. Lafferty, A. M. Kuris, R. F. Hechinger & W. Jetz, 2008. Colloquium paper: homage to Linnaeus: how many parasites? How many hosts? Proceedings of the National Academy of Sciences of the United States of America 105(Suppl): 11482–11489.CrossRefGoogle Scholar
  19. Gallagher, C. P. & T. A. Dick, 2010. Trophic structure of a landlocked Arctic char Salvelinus alpinus population from southern Baffin Island, Canada. Ecology of Freshwater Fish 19: 39–50.CrossRefGoogle Scholar
  20. Gerdeaux, D., M. A. Fillon & L. Van Overmeire, 1995. Arctic charr, Salvelinus alpinus, of Lake Annecy: yield, growth and parasitism by Eubothrium salvelini. Nordic Journal of Freshwater Research 71: 245–251.Google Scholar
  21. Halvorsen, O., 1970. Studies of the helminth fauna of Norway XV: on the taxonomy and biology of plerocercoids of Diphyllobothrium Cobbold, 1858 (Cestoda, Pseudophyllidea) from north-western Europe. Nytt Magasin for Zoologi 18: 113–174.Google Scholar
  22. Halvorsen, O. & K. Andersen, 1984. The ecological interaction between Arctic charr, Salvelinus alpinus (L.), and the plerocercoid stage of Diphyllobothrium ditremum. Journal of Fish Biology 25: 305–316.CrossRefGoogle Scholar
  23. Hammar, J., 2000. Cannibals and parasites: conflicting regulators of bimodality in high latitude Arctic char, Salvelinus alpinus. Oikos 88: 33–47.CrossRefGoogle Scholar
  24. Henricson, J., 1978. The dynamics of infection of Diphyllobothrium dendriticum (Nitzsch) and D. ditremum (Creplin) in the char Salvelinus alpinus (L.) in Sweden. Journal of Fish Biology 13: 51–71.CrossRefGoogle Scholar
  25. Henriksen, E. H., R. Knudsen, R. Kristoffersen, A. M. Kuris, K. D. Lafferty, A. Siwertsson & P.-A. Amundsen, 2016. Ontogenetic dynamics of infection with Diphyllobothrium spp. cestodes in sympatric Arctic charr Salvelinus alpinus (L.) and brown trout Salmo trutta L. Hydrobiologia 783: 37–46.CrossRefGoogle Scholar
  26. Hernandez, A. D. & P. M. Muzzall, 1998. Seasonal patterns in the biology of Eubothrium salvelini infecting brook trout in a creek in lower Michigan. Journal of Parasitology 84: 1119–1123.CrossRefGoogle Scholar
  27. Höglund, J. & A. Thuvander, 1990. Indications of non-specific protective mechanisms in rainbow trout Oncorhynchus mykiss with diplostomosis. Diseases of Aquatic Organisms 8: 91–97.CrossRefGoogle Scholar
  28. Hooker, O. E., T. E. Van Leeuwen & C. E. Adams, 2017. The physiological costs of prey switching reinforce foraging specialization. Journal of Animal Ecology 86: 605–614.CrossRefGoogle Scholar
  29. Ingham, L. & C. Arme, 1973. Intestinal helminths in rainbow trout, Salmo gairdneri (Richardson): absence of effect on nutrient absorption and fish growth. Journal of Fish Biology 5: 309–313.CrossRefGoogle Scholar
  30. Johnsen, B. O. & A. J. Jensen, 1991. The Gyrodactylus story in Norway. Aquaculture 98: 289–302.CrossRefGoogle Scholar
  31. Joy, J. E. & E. Madan, 1989. Pathology of black bass hepatic tissue infected with larvae of the tapeworm Proteocephalus ambloplitis. Journal of Fish Biology 35: 111–118.CrossRefGoogle Scholar
  32. Klemetsen, A., 2013. The most variable vertebrate on Earth. Journal of Ichthyology 53: 781–791.CrossRefGoogle Scholar
  33. Knudsen, R., H.-M. Gabler, A. M. Kuris & P.-A. Amundsen, 2001. Selective predation on parasitized prey – a comparison between two helminth species with different life-history strategies. Journal of Parasitology 87: 941–945.PubMedGoogle Scholar
  34. Knudsen, R., M. A. Curtis & R. Kristoffersen, 2004. Aggregation of helminths: the role of feeding behavior of fish hosts. Journal of Parasitology 90: 1–7.CrossRefGoogle Scholar
  35. Knudsen, R., P.-A. Amundsen, R. Nilsen, R. Kristoffersen & A. Klemetsen, 2008. Food borne parasites as indicators of trophic segregation between Arctic charr and brown trout. Environmental Biology of Fishes 83: 107–116.CrossRefGoogle Scholar
  36. Knudsen, R., P.-A. Amundsen & A. Klemetsen, 2010. Arctic charr in sympatry with burbot: ecological and evolutionary consequences. Hydrobiologia 650: 43–54.CrossRefGoogle Scholar
  37. Knudsen, R., A. Siwertsson, C. E. Adams, J. Newton & P.-A. Amundsen, 2014. Similar patterns of individual niche use are revealed by different time-integrated trophic tracers (stable isotopes and parasites). Ecology of Freshwater Fish 23: 259–268.CrossRefGoogle Scholar
  38. Krkosek, M., C. W. Revie, P. G. Gargan, O. T. Skilbrei, B. Finstad & C. D. Todd, 2013. Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean. Proceedings of the Royal Society B 280: 1–8.Google Scholar
  39. Kuhn, J. A., R. Knudsen, R. Kristoffersen, R. Primicerio & P. A. Amundsen, 2016. Temporal changes and between-host variation in the intestinal parasite community of Arctic charr in a subarctic lake. Hydrobiologia 783: 79–91.CrossRefGoogle Scholar
  40. Kuhn, J. A., R. Knudsen, R. Kristoffersen & P.-A. Amundsen, 2017. A simplified method to estimate Diphyllobothrium spp. infection in salmonids. Journal of Fish Diseases 40: 863–871.CrossRefGoogle Scholar
  41. Lafferty, K. D., 1992. Foraging on prey that are modified by parasites. The American Naturalist 140: 854.CrossRefGoogle Scholar
  42. Larsson, S. & I. Berglund, 2005. The effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populations. Journal of Thermal Biology 30: 29–36.CrossRefGoogle Scholar
  43. Lochmiller, R. L. & C. Deerenberg, 2000. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88: 87–98.CrossRefGoogle Scholar
  44. Lysne, D. A., W. Hemmingsen & A. Skorping, 2006. Is reduced body growth of cod exposed to the gill parasite Lernaeocera branchialis a cost of resistance? Journal of Fish Biology 69: 1281–1287.CrossRefGoogle Scholar
  45. Nordling, D., M. Andersson, S. Zohari & G. Lars, 1998. Reproductive effort reduces specific immune response and parasite resistance. Proceedings of the Royal Society B 265: 1291–1298.CrossRefGoogle Scholar
  46. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, H. Wagner, & M. J. Oksanen, 2013. Package ‘vegan.’ Community ecology package, version 2.9.Google Scholar
  47. Pacala, S. & A. Dobson, 1988. The relation between the number of parasites/host and host age: population dynamic causes and maximum likelihood estimation. Parasitology 96: 197–210.CrossRefGoogle Scholar
  48. Pennycuick, L., 1971. Quantitative effects of three species of parasites on a population of three-spined sticklebacks, Gasterosteus aculeatus. Journal of Zoology 165: 143–162.CrossRefGoogle Scholar
  49. Poulin, R., 2000. Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. Journal of Fish Biology 56: 123–137.CrossRefGoogle Scholar
  50. Poulin, R., 2013. Explaining variability in parasite aggregation levels among host samples. Parasitology 140: 541–546.CrossRefGoogle Scholar
  51. Poulin, R. & S. Morand, 2000. The diversity of parasites. The Quarterly Review of Biology 75: 277–293.CrossRefGoogle Scholar
  52. Poulin, R., M. A. Curtis & M. E. Rau, 1992. Effects of Eubothrium salvelini (Cestoda) on the behaviour of Cyclops vernalis (Copepoda) and its susceptibility to fish predators. Parasitology 105: 265–271.CrossRefGoogle Scholar
  53. R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria.
  54. Saksvik, M., F. Nilsen, A. Nylund & B. Berland, 2001. Effect of marine Eubothrium sp. (Cestoda: Pseudophyllidea) on the growth of Atlantic salmon, Salmo salar L. Journal of Fish Diseases 24: 111–119.CrossRefGoogle Scholar
  55. Scholz, T., 1999. Life cycles of species of Proteocephalus, parasites of fishes in the Palearctic region: a review. Journal of Helminthology 73: 1–19.PubMedGoogle Scholar
  56. Shaw, D. J. & A. P. Dobson, 1995. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111: S111–S127.CrossRefGoogle Scholar
  57. Sirois, P. & J. J. Dodson, 2000. Influence of turbidity, food density and parasites on the ingestion and growth of larval rainbow smelt Osmerus mordax in an estuarine turbidity maximum. Marine Ecology Progress Series 193: 167–179.CrossRefGoogle Scholar
  58. Skarstein, F., I. Folstad & S. Liljedal, 2001. Whether to reproduce or not: immune suppression and costs of parasites during reproduction in the Arctic charr. Canadian Journal of Zoology 79: 271–278.CrossRefGoogle Scholar
  59. Soldánová, M., S. Georgieva, J. Roháčová, R. Knudsen, J. A. Kuhn, E. H. Henriksen, A. Siwertsson, J. C. Shaw, A. M. Kuris, P.-A. Amundsen, T. Scholz, K. D. Lafferty & A. Kostadinova, 2017. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. International Journal for Parasitology 47: 327–345.CrossRefGoogle Scholar
  60. Stables, J. N. & L. H. Chappell, 1986. Putative immune response of rainbow trout, Salmo gairdneri, to Diplostomum spathaceum infections. Journal of Fish Biology 29: 115–122.CrossRefGoogle Scholar
  61. Thomas, J. D., 1958. Studies on Crepidostomum metoecus (Braun) and C. farionis (Müller), parasitic in Salmo trutta L. and S. salar L. in Britain. Parasitology 48: 336–352.CrossRefGoogle Scholar
  62. Van Der Most, P. J., B. De Jong, H. K. Parmentier & S. Verhulst, 2011. Trade-off between growth and immune function: a meta-analysis of selection experiments. Functional Ecology 25: 74–80.CrossRefGoogle Scholar
  63. Vik, R., 1957. Studies of the helminth fauna of Norway. I. Taxonomy and ecology of Diphyllobothrium norvegicum n. sp. and the plerocercoid of Diphyllobothrium latum (L.). Nytt Magasin for Zoologi 5: 26–93.Google Scholar
  64. Vik, R., 1958. Studies of the helminth fauna of Norway. II. Distribution and life cycle of Cyathocephalus truncatus (Pallas, 1781) (Cestoda). Nytt Magasin for Zoologi 6: 97–110.Google Scholar
  65. Williams, H. H., K. MacKenzie & A. M. McCarthy, 1992. Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries 176: 144–176.CrossRefGoogle Scholar
  66. Wootton, R. J., 1998. Ecology of teleost fishes. Kluwer, London.Google Scholar
  67. Zelmer, D. A. & H. P. Arai, 1998. The contributions of host age and size to the aggregated distribution of parasites in yellow perch, Perca flavescens, from Garner Lake, Alberta, Canada. The Journal of Parasitology 84: 24–28.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  2. 2.Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  3. 3.The Norwegian Institute for Nature ResearchTrondheimNorway

Personalised recommendations