Advertisement

Hydrobiologia

, Volume 830, Issue 1, pp 179–200 | Cite as

Sub-basin and temporal variability of macroinvertebrate assemblages in Alpine streams: when and where to sample?

  • C. GabbudEmail author
  • C. T. Robinson
  • S. N. Lane
Primary Research Paper

Abstract

The seasonal dynamics and spatial variability of macroinvertebrate assemblages in Alpine streams are becoming better understood. However, the implications of this knowledge for indices used in monitoring programs have yet to be fully considered. Establishing the ecological status of such streams using macroinvertebrates may then be difficult if what is expected to be found, and where, varies across small distances between streams at a given altitude, or between years in response to different climatic characteristics. In this paper, we evaluated the degree of spatial variability in macroinvertebrate abundance and diversity for 14 tributaries at similar altitude that feed a 6-km reach of an Alpine stream, and how this spatial variability differs within and between years. Environmental variables and macroinvertebrates were sampled on 10 dates for assessment. The data showed that differences in environmental characteristics over relatively short distances lead to between tributary differences in the “windows of opportunity” and hence when a tributary should be sampled for monitoring purposes. Superimposed on this spatial variability was inter-annual variability linked to climate differences that shifted this “window of opportunity” in time, and thus altered when monitoring was optimal for any one tributary in any one year. If biological indices are not rendered sensitivity to these variations, the results obtained may reflect more natural variability than possible human impacts.

Keywords

Aquatic ecology Climate change Spatial variability Bioassessment Ecological index Intermittent streams 

Notes

Acknowledgements

We thank the SNSF—Swiss National Science Foundation, the National Research Program—NRP70 titled “HydroEnv - Optimizing environmental flow releases under future hydropower operation” and the University of Lausanne, Switzerland for funding the study.

Supplementary material

10750_2018_3862_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 39 kb)

References

  1. Adriaenssens, V., P. F. M. Verdonschot, P. L. M. Goethals & N. De Pauw, 2007. Application of clustering techniques for the characterization of macroinvertebrate communities to support river restoration management. Aquatic Ecology 41: 387–398.Google Scholar
  2. Agence de l’eau, 2000. Indice biologique global normalise I.B.G.N., NF-T90-350; Guide technique (2ème edition). AFNOR, Paris.Google Scholar
  3. AQEM Consortium, 2002. Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0, February 2002. AQEM Consortium, Deutschland.Google Scholar
  4. Armitage, P. D., I. Pardo & A. Brown, 1995. Temporal constancy of faunal assemblages in mesohabitats. Application to management. Archiv für Hydrobiologie 133: 367–387.Google Scholar
  5. Arnold, N., 2005. Investigation the sensitivity of glacier mass-balance/elevation profiles to changing meteorological conditions: model experiments for Haut Glacier d’Arolla, Valais, Switzerland. Arctic, Antarctic and Alpine Research 37: 139–145.Google Scholar
  6. Aroviita, J., H. Mykräc & H. Hämäläinena, 2010. River bioassessment and the preservation of threatened species: towards acceptable biological quality criteria. Ecological Indicators 10: 789–795.Google Scholar
  7. Bailly, P. & C. Carrère, 2015. Statistiques Descriptives: L’économie et les chiffres. Presses universitaires, Grenoble.Google Scholar
  8. Bizzotto, E. C., S. Villa & M. Vighi, 2009. POP bioaccumulation in macroinvertebrates of Alpine freshwater systems. Environmental Pollution 157: 3192–3198.PubMedGoogle Scholar
  9. Bo, T., A. Doretto, A. Laini, F. Bona & S. Fenoglio, 2017. Biomonitoring with macroinvertebrate communities in Italy: what happened to our past and what is the future? Journal of Limnology 76(s1): 21–28.Google Scholar
  10. Bray, J. R. & J. T. Curtis, 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.Google Scholar
  11. Breinlinger, R., P. Gamma & R. Weingartner, 1992. Characteristics of small basins. Hydrological Atlas of Switzerland, Plate 1.2. Swiss National Hydrological and Geological Survey, Bern.Google Scholar
  12. Brown, L. E., D. M. Hannah & A. M. Milner, 2003. Alpine stream habitat classification: an alternative approach incorporating the role of dynamic water source contributions. Arctic, Antarctic, and Alpine Research 35: 313–322.Google Scholar
  13. Brown, L. E., A. M. Milner & D. M. Hannah, 2006. Stability and persistence of Alpine stream macroinvertebrate communities and the role of physicochemical habitat variables. Hydrobiologia 560: 159–173.Google Scholar
  14. Brown, L. E., D. M. Hannah & A. M. Milner, 2007. Vulnerability of Alpine stream biodiversity to shrinking glaciers and snowpacks. Global Change Biology 13: 958–966.Google Scholar
  15. Brown, L. E., D. M. Hannah & A. M. Milner, 2009. ARISE: a classification tool for Alpine River and Stream Ecosystems. Freshwater Biology 54: 1357–1369.Google Scholar
  16. Brown, L. E., N. E. Dickson, J. L. Carrivick & L. Füreder, 2015. Alpine river ecosystem response to glacial and anthropogenic flow pulses. Freshwater Science 34: 1201–1215.Google Scholar
  17. Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.PubMedGoogle Scholar
  18. Burgazzi, G., A. Laini, E. Racchetti & P. Viaroli, 2017. Mesohabitat mosaic in lowland braided rivers: Short-term variability of macroinvertebrate metacommunities. Journal of Limnology 76: s1.Google Scholar
  19. Burgherr, P. & J. V. Ward, 2001. Longitudinal and seasonal distribution patterns of the benthic fauna of an Alpine glacial stream (Val Roseg, Swiss Alps). Freshwater Biology 46: 1705–1721.Google Scholar
  20. Callanan, M., J.-R. Baars & M. Kelly-Quinn, 2008. Critical influence of season sampling on the ecological quality assessment of small headwater streams. Hydrobiologia 610: 245–255.Google Scholar
  21. Charvet, S., A. Kosmala & B. Statzner, 1998. Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Archiv für Hydrobiologie 142: 415–432.Google Scholar
  22. Clarke, R. T., M. T. Furse, R. J. M. Gunn, J. M. Winder & J. F. Wright, 2002. Sampling variation in macroinvertebrate data and implications for river quality indices. Freshwater Biology 47: 1735–1751.Google Scholar
  23. Clarke, R. T., J. F. Wright & M. T. Furse, 2003. RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160: 219–233.Google Scholar
  24. Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.PubMedGoogle Scholar
  25. Digby, P. G. N. & R. A. Kempton, 1987. Population and Community Biology Series: Multivariate Analysis of Ecological Communities. Chapman and Hall, London.Google Scholar
  26. Dray, S., A.-B. Dufour & J. Thioulouse, 2014. Multivariate Analysis of Ecological Data with ade4. University of Lausanne, Lausanne.Google Scholar
  27. Dohet, A., L. Ector, H.-M. Cauchie & L. Hoffmann, 2008. Identification of benthic invertebrate and diatom indicator taxa that distinguish different stream types as well as degraded from reference conditions in Luxembourg. Animal Biology 58: 419–472.Google Scholar
  28. Eklöv, A. G., L. A. Greenberg, C. Brönmark, P. Larsson & O. Berglund, 1999. Influence of water quality, habitat and species richness on brown trout population. Journal of Fish Biology 54: 33–43.Google Scholar
  29. Feio, M. J. & J. M. Poquet, 2011. Predictive models for freshwater biological assessment: statistical approaches, biological elements and the iberian peninsula experience: a review. International Review of Hydrobiology 96: 321–346.Google Scholar
  30. Füreder, L., 1999. High Alpine streams: cold habitats for insect larvae. In Margesin, R. & F. Schinner (eds), Cold Adapted Organisms: Ecophysiology, Enzymology and Molecular Biology. Springer, Berlin.Google Scholar
  31. Füreder, L., C. Schütz, M. Wallinger & R. Burger, 2001. Physico-chemistry and aquatic insects of a glacier-fed and a spring-fed Alpine stream. Freshwater Biology 46: 1673–1690.Google Scholar
  32. Füreder, L., M. Wallinger & R. Burger, 2005. Longitudinal and seasonal pattern of insect emergence in Alpine streams. Aquatic Ecology 39: 67–78.Google Scholar
  33. Gabbud, C., C. T. Robinson & S. N. Lane, 2018. Summer is in winter: disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Science of the Total Environment 650: 2164–2180.PubMedGoogle Scholar
  34. Ghetti, P. F. & G. Bonazzi, 1977. A comparison between various criteria for the interpretation of biological data in the analysis of the quality of running waters. Water Research 11: 819–831.Google Scholar
  35. Goodall, D. W., 1954. Objective methods for the classification of vegetation. III. An essay on the use of factor analysis. Australian Journal of Botany 1: 39–63.Google Scholar
  36. Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.Google Scholar
  37. Ilg, C. & E. Castella, 2006. Patterns of macroinvertebrate traits along three glacial stream continuums. Freshwater Biology 51: 840–853.Google Scholar
  38. Keizer-Vlek, H. E., P. F. M. Verdonschot, R. C. M. Verdonschot & P. W. Goedhart, 2012. Quantifying spatial and temporal variability of macroinvertebrate metrics. Ecological Indicators 23: 384–393.Google Scholar
  39. Li, J., A. Herlihy, W. Gerth, P. Kaufmann, S. Gregory, S. Urquhart & D. P. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology 46: 87–97.Google Scholar
  40. Legendre, P. & L. Legendre, 1998. Numerical Ecology, 3rd ed. Elsevier Science BV, Amsterdam.Google Scholar
  41. Leitão, F., S. J. Hughes, I. Máximo, N. Atanasova, A. Furtado & L. Chicharo, 2014. Habitat-oriented sampling of macroinvertebrates affects the determination of ecological status in temporary Mediterranean river systems. River Research and Applications 30: 1233–1247.Google Scholar
  42. Lencioni, V., B. Maiolini, L. Marziali, S. Lek & B. Rossaro, 2007. Macroinvertebrate assemblages in glacial stream systems: a comparison of linear multivariate methods with artificial neural networks. Ecological Modelling 203: 119–131.Google Scholar
  43. Lods-Crozet, B., E. Castella, V. Cambin, C. Ilg, S. Knispel & H. Mayor-Simeant, 2001. Macroinvertebrate community structure in relation to environmental variables in a Swiss glacial stream. Freshwater Biology 2001: 1641–1661.Google Scholar
  44. Lorenz, A. & R. T. Clarke, 2006. Sample coherence: a field study approach to assess similarity of macroinvertebrate samples. Hydrobiologia 566: 461–476.Google Scholar
  45. Maiolini, B., M. Carolli & L. Silveri, 2011. Ephemeroptera, Plecoptera and Trichoptera in springs in Trentino (south-eastern Alps). Journal of Limnology 70: 122–133.Google Scholar
  46. Malard, F., K. Tockner & J. V. Ward, 1999. Shifting dominance of subcatchment water sources and flow paths on a glacial floodplain, Val Roseg, Switzerland. Arctic, Antarctic, and Alpine Research 31: 135–150.Google Scholar
  47. Malard, F., D. Galassi, M. Lafont, S. Dolédec & J. V. Ward, 2003. Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biology 48: 1709–1725.Google Scholar
  48. McDonald, J. R., 2014. Handbook of Biological Statistics, 3rd ed. Sparky House Publishing, Baltimore.Google Scholar
  49. Meteosuisse, 2014. Climate today: trends in Switzerland. Technical Report. Zürich: Federal Office of Meteorology and Climatology Meteoswiss. [Available on www.meteosuisse.admin.ch].
  50. Meteosuisse, 2018. Portail de données pour l’enseignement et la recherche (IDAweb)-Evolène. Zürich: Federal Office of Meteorology and Climatology Meteoswiss [Available on www.meteosuisse.admin.ch].
  51. Micheletti, N., C. Lambiel & S. N. Lane, 2015. Investing decadal-scale geomorphic dynamics in an Alpine mountain setting. Journal of Geophysical Research 120: 2155–2175.Google Scholar
  52. Milner, A. M. & G. E. Petts, 1994. Glacial rivers: physical habitat and ecology. Freshwater Biology 32: 295–307.Google Scholar
  53. Newson, M. D. & C. L. Newson, 2000. Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography 24: 195–217.Google Scholar
  54. OCDE Organisation de Coopération et de Développement économiques, 2002. Examens des performances environnementales—Italie. Service des publications de l’OCDE.Google Scholar
  55. OFEV Office Fédéral de l’Environnement, 2010. Méthode d’analyse et d’appréciation des cours d’eau; Macrozoobenthos—niveau R (région). OFEV, Bern.Google Scholar
  56. Peet, R. K., 1974. The measurement of species diversity. Annual Reviews of Ecology and Systematics 5: 285–307.Google Scholar
  57. Petts, G. E. & M. A. Bickerton, 1994. Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream system: La Borgne d’Arolla, Valais, Switzerland. Freshwater Biology 32: 375–386.Google Scholar
  58. Pielou, E. C., 1984. The Interpretation of Ecological Data: A Primer on Classification and Ordination. Wiley, New York.Google Scholar
  59. Pinto, P., J. Rosado, M. Morais & I. Antunes, 2004. Assessment of methodology for southern siliceous basins in Portugal. Hydrobiologia 516: 191–214.Google Scholar
  60. Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.Google Scholar
  61. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The Natural Flow Regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.Google Scholar
  62. Pottgiesser, T. & M. Sommerhauser, 2004. Die Fliessgewässertypologie Deutschlands: System der Gewässertypen und Steckbriefe zu den Referenzbedingungen. In Steinberg C., W. Calmano, R.-D. Wilken & H. Klapper (eds), Handbuch Angewandte Limnologie. 19. Erg.Lfg. 7/04. VIII-2.1:1–16 + Anhang. ecomed Verlagsgesellschaff Landsberg.Google Scholar
  63. R Development Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org.
  64. Raven, P. J., N. T. H. Holmes, P. Charrier, F. H. Dawson, M. Naura & P. J. Boon, 2002. Towards a harmonized approach for hydromorphological assessment of rivers in Europe: a qualitative comparison of three survey methods. Aquatic Conservation 12: 405–424.Google Scholar
  65. Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day & D. M. Rosenberg, 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16: 833–852.Google Scholar
  66. Richards, K. S., 1982. Rivers: Form and Process in Alluvial Channels. Arnold, London.Google Scholar
  67. Rico, E., A. Rallo, M. A. Sevillano & M. L. Arretxe, 1992. Comparison of several biological indices based on river macroinvertebrate benthic community for assessment of running water quality. International Journal of Limnology 28: 147–156.Google Scholar
  68. Robinson, C. T., U. Uehlinger & M. Hieber, 2001. Spatio-temporal variation in macroinvertebrate assemblages of glacial streams in the Swiss Alps. Freshwater Biology 46: 1663–1672.Google Scholar
  69. Robinson, C. T., D. Tonolla, B. Imhof, R. Vukelic & U. Uehlinger, 2015. Flow intermittency, physico-chemistry and function of headwater streams in an Alpine glacial catchment. Aquatic Sciences 78: 327–341.Google Scholar
  70. Rott, E., M. Cantonati, L. Füreder & P. Pfister, 2006. Benthic algae in high altitude streams of the Alps: a neglected component of the aquatic biota. Hydrobiologia 562: 195–216.Google Scholar
  71. Saltveit, S. J., I. Haug & J. E. Brittain, 2001. Invertebrate drift in a glacial river and its non-glacial tributary. Freshwater Biology 46: 1777–1789.Google Scholar
  72. Sánchez-Montoya, M. M., M. L. Suárez & M. R. Vidal-Abarca, 2009. Seasonal and interannual variability of macroinvertebrate reference communities and its influence on bioassessment in different Mediterranean stream types. Hydrobiologia 174: 353–367.Google Scholar
  73. Sandin, L. & D. Hering, 2004. Comparing macroinvertebrate indices to detect organic pollution across Europe: a contribution to the EC Water Framework Directive intercalibration. Hydrobiologia 516: 55–68.Google Scholar
  74. Sandin, L. & R. L. Johnson, 2000. The statistical power of selected indicator metrics using macroinvertebrates for assessing acidification and eutrophication of running waters. Hydrobiologia 422: 223–243.Google Scholar
  75. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.Google Scholar
  76. Schmedtje, U., M. Sommerhäuser, U. Braukmann, E. Briem, R. Haase & D. Hering, 2000. “Top-down.” Konzept einer biozönotisch begründeten Fließgewässertypologie Deutschlands. In Deutsche Gesellschaft für Limnologie (Hrsg.): Tagungsbericht, 147–151.Google Scholar
  77. Schütz, C., M. Wallinger, R. Burger & L. Füreder, 2001. Effects of snow cover on the benthic fauna in a glacier-fed stream. Freshwater Biology 46: 1691–1704.Google Scholar
  78. Sertic Peric, M., C. Jolidon, U. Uehlinger & C. T. Robinson, 2015. Long-term ecological patterns of Alpine streams: an imprint of glacial legacies. Limnology and Oceanography 60: 992–1007.Google Scholar
  79. Snook, D. L. & A. M. Milner, 2001. The influence of glacial runoff on stream macroinvertebrate communities in the Taillon catchment, French Pyrénées. Freshwater Biology 46: 1609–1623.Google Scholar
  80. Stampfli, G., 2015. EvolèneGeo—La géologie du Val d’Hérens; Excursion B : Arolla—Pra Gra —Lac Bleu—La Gouille. Evolène-Région Tourisme. [Available on http://www.evolene-geologie.ch/data/documents/Excursion-B.pdf].
  81. Tachet, H., P. Richoux & M. Bournaud, 2010. Invertébrés d’eau Douce, Systématique, Biologie, Écologie. CNRS Editions.Google Scholar
  82. Ter Braak, C. J. F., 1897. 5. Ordination. In Jongman R. H., C. J. F. Ter Braak & O. F. R. Van Tongeren, (eds), Data Analysis in Community Ecology. Pudoc, Wageningen.Google Scholar
  83. Thioulouse, J., D. Chessel, S. Dole’dec & J. M. Olivier, 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 4: 75–83.Google Scholar
  84. Uehlinger, U., 1991. Spatial and temporal variability of the periphyton biomass in a preAlpine river (Necker, Switzerland). Archiv für Hydrobiologie 123: 219–237.Google Scholar
  85. Uehlinger, U., C. T. Robinson & M. Hieber, 2010. The physico-chemical habitat template for periphyton in Alpine glacial streams under a changing climate. Hydrobiologia 657: 107–121.Google Scholar
  86. Verneaux, J., 1982. Expression biologique, qualitative et pratique, de l’aptitude des cours d’eaux au développement de la faune benthique-Un coefficient d’aptitude biogène : le Cb2. Université, Travaux de Laboratoire d’Hydrobiologie, Besançon.Google Scholar
  87. Verneaux, J. & G. Tuffery, 1967. Une méthode zoologique pratique de détermination de la qualité biologique des eaux courantes. Indices biotiques. Annales scientifiques de l’Université de Besançon 3: 79–89.Google Scholar
  88. Ward, J. V., 1994. Ecology of Alpine streams. Freshwater Biology 32: 277–294.Google Scholar
  89. Ward, J. V., F. Malard, K. Tockner & U. Uehlinger, 1999. Influence of groundwater on surface water conditions in a glacial floodplain of the Swiss Alps. Hydrological Processes 13: 277–293.Google Scholar
  90. Wohl, E., S. N. Lane & A. C. Wilcox, 2015. The science and practice of river restoration. Water Resources Research 51: 5974–5997.Google Scholar
  91. Wright, J. F., 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology 20: 181–197.Google Scholar
  92. Wu, Y., 2017. Periphyton: Functions and Application in Environmental Remediation. Elsevier, Amsterdam.Google Scholar
  93. Zah, R. & U. Uehlinger, 2001. Particulate organic matter inputs to a glacial stream ecosystem in he Swiss Alps. Freshwater Biology 46: 1597–1608.Google Scholar
  94. Zah, R., P. Burgherr, S. M. Bernasconi & U. Uehlinger, 2001. Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream. Freshwater Biology 46: 871–882.Google Scholar
  95. Zbinden, M., M. Hieber, C. T. Robinson & U. Uehlinger, 2008. Short-term colonization patterns of macroinvertebrates in Alpine streams. Fundamental and Applied Limnology 171: 75–86.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Earth Surface DynamicsUniversity of LausanneLausanneSwitzerland
  2. 2.Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology and Institute of Integrative Biology, ETHZZurichSwitzerland

Personalised recommendations