, Volume 830, Issue 1, pp 161–177 | Cite as

Past hybridisation and introgression erased traces of mitochondrial lineages evolution in the Neotropical silver catfish Rhamdia quelen (Siluriformes: Heptapteridae)

  • Néstor RíosEmail author
  • Carmen Bouza
  • Graciela García
Primary Research Paper


The Neotropical species complex Rhamdia quelen is composed of at least six mitochondrial lineages. Three of these occur in sympatry in several regional basins, which encompass La Plata basin, Patos-Merin basin system and the coastal lagoons draining to SW Atlantic Ocean. Based on both mitochondrial cytochrome b gene and 10 nuclear microsatellite loci markers, this study aims to investigate the genetic diversity pattern and the reproductive isolation among R. quelen mitochondrial lineages. Past hybridisation and introgression were evidenced among at least two mitochondrial lineages. The ancestral structure recovered in this study was divided into two groups, which could have diverged in the last marine regression. The recent population structure of R. quelen species complex is mostly recovered following the geographic distribution pattern. We delimited seven management units, three inhabiting riverine environments and four associated to different coastal lagoons. Lagoon populations, unlike the riverine ones, would have diverged in a scenario with null or restricted gene flow and small size population, possibly related to bottleneck events. Population genetic structure should be considered for conservation legislation, fishery management and aquaculture regulation. Additionally, the present genetic structure could aggravate the impact of specimen translocation and escapees from aquaculture farms.


Population genetics Rhamdia quelen Neotropical Hybridisation Microsatellite loci 



We would like to thank Fondo Maria Viñas-Agencia Nacional de Investigación e Innovación (FMV_2009_2793 and FMV_2014_104718) for the financial support, as well as the colleagues involved in these projects: V. Gutiérrez, B. Gomez-Pardo and P. Martínez. We thank the following colleagues for kindly providing R. quelen specimens from different basins of Uruguay: F. Texeira, M. Loureiro, WS. Serra, A. Duarte, W. López and C. Clavijo. We are grateful to M. Vera and R. Fernández for their help with DAPC and SPAGEDI programs, respectively. We thank S. Sanchez, L. Insúa, V. Pérez, M. Portela, M. López and J. Guerra for technical support. The authors are also grateful to the Japanese government for the donation of laboratory equipment. The research of N.R. and G.G. was also supported by Sistema Nacional de Investigadores- Agencia Nacional de Investigación e Innovación (SNI-ANII).

Supplementary material

10750_2018_3861_MOESM1_ESM.docx (46 kb)
Supplementary material 1 (DOCX 46 kb)
10750_2018_3861_MOESM2_ESM.docx (36 kb)
Supplementary material 2 (DOCX 35 kb)
10750_2018_3861_MOESM3_ESM.docx (1.8 mb)
Supplementary material 3 (DOCX 1816 kb)


  1. Achkar, M., A. Domínguez & F. Pesce, 2013. Cuencas Hidrográficas del Uruguay: Situación y Perspectivas Ambientales y Territoriales. Programa Uruguay Sustentable, Redes Amigos de la Tierra.Google Scholar
  2. Allendorf, F. W., G. Luikart & S. N. Aitken, 2013. Conservation and the Genetics of Populations, 2nd ed. Wiley Blackwell, London.Google Scholar
  3. Anderson, E. C. & E. A. Thompson, 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160: 1217–1229.PubMedPubMedCentralGoogle Scholar
  4. Angrizani, R. C. & L. R. Malabarba, 2018. Morphology and molecular data reveal the presence of two new species under Rhamdia quelen (Quoy & Gaimard, 1824) (Siluriformes: Heptapteridae) species complex. Zootaxa 4388: 41–60.CrossRefGoogle Scholar
  5. Chistiakov, D. A., B. Hellemans & F. A. M. Volckaert, 2006. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255: 1–29.CrossRefGoogle Scholar
  6. Cortey, M., C. Pla & J. L. García-Marín, 2004. Historical biogeography of Mediterranean trout. Molecular Phylogenetics and Evolution 33: 831–844.CrossRefGoogle Scholar
  7. Danyelle, M., N. Rodrigues, C. Giovane, Á. Moreira, H. J. Perez Gutierrez, D. B. Almeida, D. Streit, H. Luiz & M. Moreira, 2015. Development of microsatellite markers for use in breeding catfish, Rhamdia sp. African Journal of Biotechnology 14: 400–411.CrossRefGoogle Scholar
  8. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods Nature Publishing Group 9: 772.CrossRefGoogle Scholar
  9. De Barba, M., C. Miquel, S. Lobréaux, P. Y. Quenette, J. E. Swenson & P. Taberlet, 2017. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Molecular Ecology Resources 17: 492–507.CrossRefGoogle Scholar
  10. de Mello, F. T., C. Iglesias, G. Goyenola, C. Fosalba & M. Meerhoff, 2007. First record of Pimelodella australis Eigenman, 1917 (Siluriformes: Heptapteridae) in Blanca Lake (Maldonado-Uruguay). Boletín de la Sociedad Zoológica del Uruguay 16: 42–45.Google Scholar
  11. do Prado, F. D., R. Fernandez-Cebrián, D. T. Hashimoto, J. A. Senhorini, F. Foresti, P. Martínez & F. Porto-Foresti, 2017. Hybridization and genetic introgression patterns between two South American catfish along their sympatric distribution range. Hydrobiologia 788: 319–343.CrossRefGoogle Scholar
  12. Do, C., R. S. Waples, D. Peel, G. M. Macbeth, B. J. Tillett & J. R. Ovenden, 2014. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources 14: 209–214.CrossRefGoogle Scholar
  13. Earl, D. A. & B. M. vonHoldt, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.CrossRefGoogle Scholar
  14. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.CrossRefGoogle Scholar
  15. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Molecular Ecology Resources 10: 564–567.CrossRefGoogle Scholar
  16. Falush, D., M. Stephens & J. K. Pritchard, 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7: 574–578.CrossRefGoogle Scholar
  17. Funk, W. C., J. K. Mckay, P. A. Hohenlohe & F. W. Allendorf, 2012. Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution Elsevier Ltd 27: 489–496.CrossRefGoogle Scholar
  18. Garavello, J. C. & O. A. Shibatta, 2016. Reappraisal of Rhamdia branneri Haseman, 1911 and R. voulezi Haseman, 1911 (Siluriformes: Heptapteridae) from the rio Iguaçu with notes on their morphometry and karyotype. Neotropical Ichthyology 14: e140111.CrossRefGoogle Scholar
  19. Garcia, C., O. Moreira-Filho, L. A. C. Bertollo & L. Centofante, 2003. B chromosomes and natural triploidy in Rhamdia sp. (Pisces, Siluriformes, Heptapteridae). Cytologia 68: 403–411.CrossRefGoogle Scholar
  20. Garcia, C., C. Oliveira & L. F. Almeida-Toledo, 2010. Karyotypic evolution trends in Rhamdia quelen (Siluriformes, Heptapteridae) with considerations about the origin and differentiation of its supernumerary chromosomes. Genetics and Molecular Research 9: 365–384.CrossRefGoogle Scholar
  21. Garnier-Gere, P. & C. Dillmann, 1992. A computer program for testing pairwise linkage disequilibria in subdivided populations. Journal of Heredity 83: 239.CrossRefGoogle Scholar
  22. Gordeeva, N. V., E. I. Chukova & A. G. Oleinik, 2010. Microsatellite genetic variation of Asian populations of Dolly Varden char. Hydrobiologia 650: 133–144.CrossRefGoogle Scholar
  23. Goudet, J., 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3). Accessed July 2018
  24. Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.CrossRefGoogle Scholar
  25. Hänfling, B., P. Bolton, M. Harley & G. R. Carvalho, 2005. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshwater Biology 50: 403–417.CrossRefGoogle Scholar
  26. Hardy, O. J. & X. Vekemans, 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618–620.CrossRefGoogle Scholar
  27. Hasegawa, M., H. Kishino & T. Yano, 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of molecular evolution 22: 160–174.CrossRefGoogle Scholar
  28. Hernández, C. L., A. Ortega-Lara, G. C. Sánchez-Garcés & M. H. Alford, 2015. Genetic and morphometric evidence for the recognition of several recently synonymized species of trans-andean Rhamdia (Pisces: Siluriformes: Heptapteridae). Copeia 103: 563–579.CrossRefGoogle Scholar
  29. Ittzés, I., T. Szabó, E. C. Kronbauer & B. Urbányi, 2015. Ovulation induction in jundiá (Rhamdia quelen, Heptapteridae) using carp pituitary extract or salmon GnRH analogue combined with dopamine receptor antagonists. Aquaculture Research 46: 2924–2928.CrossRefGoogle Scholar
  30. Jombart, T., 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405.CrossRefGoogle Scholar
  31. Kalinowski, S. T., M. L. Taper & T. C. Marshall, 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099–1106.CrossRefGoogle Scholar
  32. Kang, J., X. Ma & S. He, 2017. Population genetics analysis of the Nujiang catfish Creteuchiloglanis macropterus through a genome-wide single nucleotide polymorphisms resource generated by RAD-seq. Scientific Reports 7: 1–13.CrossRefGoogle Scholar
  33. Kopelman, N. M., J. Mayzel, M. Jakobsson & N. A. Rosenberg, 2015. C LUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15: 1179–1191.CrossRefGoogle Scholar
  34. Laborde, J.L., 1997. Marco geomorfológico y geológico del Río de la Plata, en The Río de la Plata: an Environmental Review, Wells and Daborn (eds). An ECOPLATA project Background Report, Dalhouisie University.Google Scholar
  35. Loureiro M, M. Zarucki, & I. González, 2013. Peces Continentales In Soutullo, A., & C. Clavijo (eds), Especies prioritarias para la conservación en Uruguay. Vertebrados, moluscos continentales y plantas vasculares. SNAP/DINAMA/MVOTMA y DICYT/MEC, Montevideo: 91–112.Google Scholar
  36. Luikart, P. S. & J. M. Cornuet, 1999. BOTTLENECK: a computer program for detecting recent reduction in the effective population size using allele frequency data. Journal of Heredity 90: 502–503.CrossRefGoogle Scholar
  37. Martinez, J., R. Lui, D. Blanco, J. Traldi, L. F. Silva, P. C. Venere, I. L. Souza & O. Moreira-Filho, 2011. Comparative cytogenetics of three populations from the Rhamdia quelen species complex (Siluriformes, Heptapteridae) in two Brazilian hydrographic basins. Caryologia 64: 121–128.CrossRefGoogle Scholar
  38. Martínez, P., C. Bouza, J. Castro, M. Hermida, B. G. Pardo & L. Sánchez, 2007. Analysis of a secondary contact between divergent lineages of brown trout Salmo trutta L. from Duero basin using microsatellites and mtDNA RFLPs. Journal of Fish Biology 71: 195–213.CrossRefGoogle Scholar
  39. Mazzeo, N., L. Rodríguez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. García-Rodríguez, 2003. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506–509: 591–602.CrossRefGoogle Scholar
  40. Medrano, J. F., E. Aasen & L. Sharrow, 1990. DNA extraction from nucleated red blood cells. BioTechniques 8: 43.PubMedGoogle Scholar
  41. Menezes, C., I. Ruiz-Jarabo, J. A. Martos-Sitcha, C. Toni, J. Salbego, A. Becker, V. L. Loro, G. Martínez-Rodríguez, J. M. Mancera & B. Baldisserotto, 2015. The influence of stocking density and food deprivation in silver catfish (Rhamdia quelen): a metabolic and endocrine approach. Aquaculture Elsevier B.V. 435: 257–264.Google Scholar
  42. Minin, V., Z. Abdo, P. Joyce & J. Sullivan, 2003. Performance-based selection of likelihood models for phylogeny estimation. Systematic Biology 52: 674–683.CrossRefGoogle Scholar
  43. Molecular Ecology Resources Primer Development Consortium, S.R. Arranz, J. Avarre, C. Balasundaram, C. Bouza, N. B. Calcaterra, Z. Zhuang, 2013. Permanent genetic resources added to molecular ecology resources Database 1 December 2012–31 January 2013, (December 2012): 546–549.Google Scholar
  44. Moritz, C., 1994. Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology and Evolution 9: 373–375.CrossRefGoogle Scholar
  45. Nielsen, E. E., L. A. Bach & P. Kotlicki, 2006. HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples. Molecular Ecology Notes 6: 971–973.CrossRefGoogle Scholar
  46. Ochoa, L. E., L. H. G. Pereira, G. J. Costa-Silva, F. F. Roxo, J. S. Batista, K. Formiga, F. Foresti & C. Oliveira, 2015. Genetic structure and historical diversification of catfish Brachyplatystoma platynemum (Siluriformes: Pimelodidae) in the Amazon basin with implications for its conservation. Ecology and Evolution 5: 2005–2020.CrossRefGoogle Scholar
  47. Palumbi, S., A. Martin, S. Romano, W. O. McMillan, L. Stice & G. Grabowski, 1991. The simple fool’s guide to PCR. Department of Zoology and Kewalo Marine Laboratory, Univ, Hawaii.Google Scholar
  48. Pavlova, A., L. B. Beheregaray, R. Coleman, D. Gilligan, K. A. Harrisson, B. A. Ingram, J. Kearns, A. M. Lamb, M. Lintermans, J. Lyon, T. T. T. Nguyen, M. Sasaki, Z. Tonkin, J. D. L. Yen & P. Sunnucks, 2017. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evolutionary Applications 10: 531–550.CrossRefGoogle Scholar
  49. Perdices, A., E. Bermingham, A. Montilla & I. Doadrio, 2002. Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Molecular Phylogenetics and Evolution 25: 172–189.CrossRefGoogle Scholar
  50. Pereira, L. H. G., F. Foresti & C. Oliveira, 2009. Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behaviour. Ecology of Freshwater Fish 18: 215–225.CrossRefGoogle Scholar
  51. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedPubMedCentralGoogle Scholar
  52. Raymond, M. & F. Rousset, 1995. Genepop (Version-1.2)—population-genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.CrossRefGoogle Scholar
  53. Rhymer, J. M. & D. Simberloff, 1996. Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27: 83–109.CrossRefGoogle Scholar
  54. Ribolli, J. & E. Zaniboni-Filho, 2009. Individual contributions to pooled-milt fertilizations of silver catfish Rhamdia quelen. Neotropical Ichthyology 7: 629–634.CrossRefGoogle Scholar
  55. Ribolli, J., B. M. Scaranto, O. A. Shibatta, R. A. Bombardelli & E. Zaniboni-Filho, 2017. DNA barcoding confirms the occurrence of Rhamdia branneri and Rhamdia voulezi (Siluriformes: Heptapteridae) in the Iguaçu River Basin. Neotropical Ichthyology 15: e160147.CrossRefGoogle Scholar
  56. Ríos, N., C. Bouza, V. Gutiérrez & G. García, 2017. Species complex delimitation and patterns of population structure at different geographic scales in Neotropical silver catfish (Rhamdia: Heptapteridae). Environmental Biology of Fishes Environmental Biology of Fishes 100: 1047–1067.CrossRefGoogle Scholar
  57. Robledo, D., C. Palaiokostas, L. Bargelloni, P. Martínez & R. Houston, 2017. Applications of genotyping by sequencing in aquaculture breeding and genetics. Reviews in Aquaculture 10: 670–682.CrossRefGoogle Scholar
  58. Rutkowski, R., D. Zawadzka, E. Suchecka & D. Merta, 2017. Conservation genetics of the capercaillie in Poland—delineation of conservation units. PLoS ONE 12: e0174901.CrossRefGoogle Scholar
  59. Scaranto, B. M. S., J. Ribolli & E. Zaniboni-Filho, 2018. DNA barcoding reveals blend of silver catfish Rhamdia species from fish farms in Southern Brazil. Aquaculture Research 49: 1907–1913.CrossRefGoogle Scholar
  60. Schulz, U. H. & C. Leuchtenberger, 2006. Activity patterns of South American silver catfish (Rhamdia quelen). Brazilian Journal of Biology 66: 565–574.CrossRefGoogle Scholar
  61. Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461–464.CrossRefGoogle Scholar
  62. Sefc, K. M., K. Mattersdorfer, C. M. Hermann & S. Koblmüller, 2017. Past lake shore dynamics explain present pattern of unidirectional introgression across a habitat barrier. Hydrobiologia 791: 69–82.CrossRefGoogle Scholar
  63. Serra, S., J. Bessonart, F. T. de Mello, A. Duarte, L. Malabarba & M. Loureiro, 2014. Peces del Río Negro. Montevideo, MGAP-DINARA.Google Scholar
  64. Silfvergrip, A. M. C., 1996. A systematic revision of the Neotropical catfish genus Rhamdia (Teleostei Pimelodidae). Thesis, Swedish Museum of Natural History, StockholmGoogle Scholar
  65. Singhal, S., & C. Moritz, 2013. Reproductive isolation between phylogeographic lineages scales with divergence. Proceedings. Biological sciences/The Royal Society 280: 20132246.Google Scholar
  66. Thompson, J. D., T. J. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.CrossRefGoogle Scholar
  67. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley, 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.CrossRefGoogle Scholar
  68. Vaz, B. S., G. M. Cerqueira, J. C. Silva, V. H. B. Manzke & C. G. A. Moreira, 2010. Sequence analysis of the growth hormone gene of the South American catfish Rhamdia quelen. Genetics and Molecular Research 9: 2184–2190.CrossRefGoogle Scholar
  69. Vera, M., J. L. Garcia-Marin, P. Martinez, R. M. Araguas & C. Bouza, 2013. Identification and conservation of remnant genetic resources of brown trout in relict populations from Western Mediterranean streams. Hydrobiologia 707: 29–45.CrossRefGoogle Scholar
  70. Wallis, G. P., S. R. Cameron-Christie, H. L. Kennedy, G. Palmer, T. R. Sanders & D. J. Winter, 2017. Interspecific hybridization causes long-term phylogenetic discordance between nuclear and mitochondrial genomes in freshwater fishes. Molecular Ecology 26: 3116–3127.CrossRefGoogle Scholar
  71. Wang, J., 2002. An estimator for pairwise relatedness using molecular markers. Genetics 160: 1203–1215.PubMedPubMedCentralGoogle Scholar
  72. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.Google Scholar
  73. Yang, J., S. He, J. Freyhof, K. Witte & H. Liu, 2006. The phylogenetic relationships of the Gobioninae (Teleostei: Cyprinidae) inferred from mitochondrial cytochrome b gene sequences. Hydrobiologia 553: 255–266.CrossRefGoogle Scholar
  74. Zhong, L., X. Chen, M. Wang & S. Zhang, 2015. A species-specific microsatellite marker to discriminate blue catfish, channel catfish and F1 hybrids. Conservation Genetics Resources Springer, Netherlands 7: 827–829.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Sección Genética Evolutiva, Facultad de CienciasUdelaRMontevideoUruguay
  2. 2.Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de LugoUniversidade de Santiago de CompostelaLugoSpain

Personalised recommendations