, Volume 830, Issue 1, pp 77–92 | Cite as

Effectiveness of catchment erosion protection measures and scale-dependent response of stream biota

  • Josef Knott
  • Melanie Mueller
  • Joachim Pander
  • Juergen GeistEmail author
Primary Research Paper


Many rivers in Central Europe are heavily affected by increased sedimentation due to erosion from agricultural land. High fine sediment loads can clog the interstitial system, increase turbidity, limit light penetration and potentially reduce primary productivity with negative impacts on stream biota such as reduced abundance and diversity. In this study, the effects of different erosion protection measures on instream sedimentation and the communities of fishes, macroinvertebrates and periphyton were evaluated. The erosion protection measures in the catchment successfully reduced the fine-sediment and nutrient input into the river system resulting in positive effects on interstitial habitat quality and the species assemblage of the assessed biota. The single taxonomic groups differed in their response both to catchment-related and instream-related variables. Fish community composition was best explained by catchment-scale variables, while periphyton and macroinvertebrate assemblage structure was significantly governed by instream-scale variables. For increasing restoration success, a combination of measures in the catchment area with structure-enhancing measures within the stream is necessary. The results also suggest that an integrative assessment of abiotic and biotic variables in monitoring increases the detectability of effects on the instream scale.


Aquatic biodiversity Land use Terrestrial-aquatic interface Fine sediment Watershed management River restoration 



We are grateful to Wasserwirtschaftsamt Deggendorf for financial support of this study and to Fischereifachberatung Niederbayern for their support during the electro-fishing surveys. We are also grateful to P. Strohmeier and the Bayerische Landesanstalt für Landwirtschaft for providing land use data. We would like to thank all volunteers for supporting the field samplings.

Supplementary material

10750_2018_3856_MOESM1_ESM.docx (50 kb)
Supplementary material 1 (DOCX 49 kb)


  1. Acornley, R. M. & D. A. Sear, 1999. Sediment transport and siltation of brown trout (Salmo trutta L.) spawning gravels in chalk streams. Hydrological Processes 13: 447–458.Google Scholar
  2. Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.Google Scholar
  3. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods, 1st ed. PRIMER-E Ltd., Plymouth, UK.Google Scholar
  4. Angermeier, P. L. & J. R. Karr, 1984. Relationships between woody debris and fish habitat in a small warm water stream. Transactions of the American Fisheries Society 113: 716–726.Google Scholar
  5. Auerswald, K., P. Fiener & R. Dikau, 2009. Rates of sheet and rill erosion in Germany – A meta-analysis. Geomorphology 111: 182–193.Google Scholar
  6. Auerswald, K. & J. Geist, 2018. Extent and causes of siltation in a headwater stream bed: catchment soil erosion is less important than internal stream processes. Land Degradation and Development 29: 737–748.Google Scholar
  7. Balon, E. K., 1975. Reproductive guilds of fishes: a proposal and definition. Journal of the Fisheries Board of Canada 32: 821–864.Google Scholar
  8. Bates, D., M. Maechler, B. Bolker & S. Walker, 2014. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.Google Scholar
  9. Belsley, D. A., E. Kuh & R. E. Welsch, 2005. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Vol. 571. Wiley, New York.Google Scholar
  10. Bernhardt, E. S. & M. A. Palmer, 2011. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecological Applications 21: 1926–1931.PubMedGoogle Scholar
  11. Biggs, B. J. F., 2000. New Zealand Periphyton Guideline. Detecting, Monitoring and Managing Enrichment of Streams. NIWA, Christchurch.Google Scholar
  12. Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.Google Scholar
  13. Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.Google Scholar
  14. Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.Google Scholar
  15. Bretschko, G., 1995. The ecological importance of streambed sediments, regardless of whether or not they are inundated. Folia Facultatis Scientarium Naturalium Universitatis Masarykianae Brunensis, Biologia 91: 5–17.Google Scholar
  16. Bruton, M. N., 1985. The effects of suspensoids on fish. Hydrobiologia 125: 221–241.Google Scholar
  17. Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.PubMedGoogle Scholar
  18. Cerdan, O., G. Govers, Y. Le Bissonnais, K. Van Oost, J. Poesen, N. Saby, A. Gobin, A. Vacca, J. Quinton, K. Auerswald, A. Klik, F. J. P. M. Kwaad, D. Raclot, I. Ionita, J. Rejman, S. Rousseva, T. Muxart, M. J. Roxo & T. Dostal, 2010. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122: 167–177.Google Scholar
  19. Chapman, D. W., 1988. Critical review of variables used to define effects of fines in redds of large salmonids. Transactions of the American Fisheries Society 117: 1–21.Google Scholar
  20. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial, 2nd ed. PRIMER-E, Plymouth, UK.Google Scholar
  21. Cleveland, W. S. & S. J. Devlin, 1988. Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83: 596–610.Google Scholar
  22. Cline, L. D., R. A. Short & J. V. Ward, 1982. The influence of highway construction on the macroinvertebrates and epilithic algae of a high mountain stream. Hydrobiologia 96: 149–159.Google Scholar
  23. Cooper, S. D., P. S. Lake, S. Sabater, J. M. Melack & J. L. Sabo, 2013. The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 719: 383–425.Google Scholar
  24. Crawford, R. M., 1975. The taxonomy and classification of the diatom genus Melosira C.Ag. I. The type species M. nummuloides C.Ag. British Phycological Journal 10: 323–338.Google Scholar
  25. Culp, J. M., F. J. Wrona & R. W. Davies, 1986. Response of stream benthos and drift to fine sediment deposition versus transport. Canadian Journal of Zoology 64: 1345–1351.Google Scholar
  26. Davies, B., J. Biggs, P. Williams & S. Thompson, 2009. Making agricultural landscapes more sustainable for freshwater biodiversity: a case study from southern England. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 439–447.Google Scholar
  27. Davies-Colley, R. J., C. W. Hickey, J. M. Quinn & P. A. Ryan, 1992. Effects of clay discharges on streams. Hydrobiologia 248: 215–234.Google Scholar
  28. Denic, M. & J. Geist, 2015. Linking stream sediment deposition and aquatic habitat quality in pearl mussel streams: implications for conservation. River Research and Applications 31: 943–952.Google Scholar
  29. Denic, M., K. Stoeckl, B. Gum & J. Geist, 2014. Physicochemical assessment of Unio crassus habitat quality in a small upland stream and implications for conservation. Hydrobiologia 735: 111–122.Google Scholar
  30. Dickman, M. D., M. R. Peart & W. Wai-Shu Yim, 2005. Benthic diatoms as indicators of stream sediment concentration in Hong Kong. International Review of Hydrobiology 90: 412–421.Google Scholar
  31. Diggle, P. J., P. J. Heagerty, K. Y. Liang & S. L. Zeger, 2002. Analysis of Longitudinal Data, 2nd ed. Oxford University Press, Oxford, England.Google Scholar
  32. Din EN 1899–2, 1998. Water Quality – Determination of Biochemical Oxygen Demand After n Days (BODn) – Part 2: Method for Undiluted Samples. Beuth Verlag, Berlin, Germany.Google Scholar
  33. DIN EN 14011, 2003. Water Quality – Sampling of Fish with Electricity. Beuth Verlag, Berlin, Germany.Google Scholar
  34. DIN EN 15204, 2006. Water Quality – Guidance Standard on the Enumeration of Phytoplankton Using Inverted Microscopy (Utermöhl technique). Beuth Verlag, Berlin, Germany.Google Scholar
  35. DIN EN ISO 10870, 2012. Water Quality – Guidelines for the Selection of Sampling Methods and Devices for Benthic Macroinvertebrates in Fresh Waters. Beuth Verlag, Berlin, Germany.Google Scholar
  36. Doeg, T. J. & J. D. Koehn, 1994. Effects of draining and desilting a small weir on downstream fish and macroinvertebrates. River Research and Applications 9: 263–277.Google Scholar
  37. Duerregger, A., J. Pander, M. Palt, M. Mueller, C. Nagel & J. Geist, 2018. The importance of stream interstitial conditions for the early life stage development of the European nase (Chondrostoma nasus L.). Ecology of Freshwater Fish 27: 920–932.Google Scholar
  38. Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression, 2nd ed. Sage, Thousand Oaks CA.Google Scholar
  39. Geist, J. & K. Auerswald, 2007. Physicochemical stream bed characteristics and recruitment of the freshwater pearl mussel (Margaritifera margaritifera). Freshwater Biology 52: 2299–2316.Google Scholar
  40. Geist, J., 2011. Integrative freshwater ecology and biodiversity conservation. Ecological Indicators 11: 1507–1516.Google Scholar
  41. Graham, A. A., 1990. Siltation of stone-surface periphyton in rivers by clay-sized particles from low concentrations in suspension. Hydrobiologia 199: 107–115.Google Scholar
  42. Gray, L. J. & J. V. Ward, 1982. Effects of sediment releases from a reservoir on stream macroinvertebrates. Hydrobiologia 96: 177–184.Google Scholar
  43. Griffiths, N. A., J. L. Tank, T. V. Royer, E. J. Rosi-Marshall, M. R. Whiles, C. P. Chambers, T. C. Frauendorf & M. A. Evans-White, 2009. Rapid decomposition of maize detritus in agricultural headwater streams. Ecological Applications 19: 133–142.PubMedGoogle Scholar
  44. Grossman, G. D., A. D. Sostoa, M. C. Freeman & J. Lobón-Cerviá, 1987. Microhabitat use in a mediterranean riverine fish assemblage. Oecologia 73: 501–512.PubMedGoogle Scholar
  45. Hauer, F. R. & G. A. Lamberti, 2007. Methods in Stream Ecology, 2nd ed. Elsevier, Oxford.Google Scholar
  46. Henley, W. F., M. A. Patterson, R. J. Neves & A. D. Lemly, 2000. Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in Fisheries Science 8: 125–139.Google Scholar
  47. Jones, J. I., C. P. Duerdoth, A. L. Collins, P. S. Naden & D. A. Sear, 2014. Interactions between diatoms and fine sediment. Hydrological Processes 28: 1226–1237.Google Scholar
  48. Kemp, P., D. Sear, A. Collins, P. Naden & I. Jones, 2011. The impacts of fine sediment on riverine fish. Hydrological Processes 25: 1800–1821.Google Scholar
  49. Kondolf, G. M., 2000. Assessing salmonid spawning gravel quality. Transactions of the American Fisheries Society 129: 262–281.Google Scholar
  50. Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Publications Kottelat, Cornol and Freyhof, Berlin.Google Scholar
  51. Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.Google Scholar
  52. Lemly, A. D., 1982. Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment. Hydrobiologia 87: 229–245.Google Scholar
  53. Lorenz, A. W., S. C. Jähnig & D. Hering, 2009. Re-meandering German lowland streams: qualitative and quantitative effects of restoration measures on hydromorphology and macroinvertebrates. Environmental Management 44: 745–754.PubMedGoogle Scholar
  54. Meier, C., P. Haase, P. Rolauffs, K. Schindehütte, F. Schöll, A. Sundermann & D. Hering, 2006. Methodisches Handbuch Fließgewässerbewertung. Handbuch zur Untersuchung und Bewertung von Fließgewässern auf der Basis des Makrozoobenthos vor dem Hintergrund der EG-Wasserrahmenrichtlinie.Google Scholar
  55. Moring, J. R., 1982. Decrease in stream gravel permeability after clear-cut logging: an indication of intragravel conditions for developing salmonid eggs and alevins. Hydrobiologia 88: 295–298.Google Scholar
  56. Mueller, M., J. Pander & J. Geist, 2011. The effects of weirs on structural stream habitat and biological communities. Journal of Applied Ecology 48: 1450–1461.Google Scholar
  57. Mueller, M., J. Pander, R. Wild, T. Lueders & J. Geist, 2013. The effects of stream substratum texture on interstitial conditions and bacterial biofilms: Methodological strategies. Limnologica 43: 106–113.Google Scholar
  58. Mueller, M., J. Pander & J. Geist, 2014a. The ecological value of stream restoration measures: an evaluation on ecosystem and target species scale. Ecological Engineering 62: 129–139.Google Scholar
  59. Mueller, M., J. Pander & J. Geist, 2014b. A new tool for assessment and monitoring of community and ecosystem change based on multivariate abundance data integration from different taxonomic groups. Environmental Systems Research 3: 1–9.Google Scholar
  60. Müllner, A. N. & M. Schagerl, 2003. Abundance and vertical distribution of the phytobenthic community within a pool and riffle sequence of an Alpine gravel stream. International Review of Hydrobiology 88: 243–254.Google Scholar
  61. O’brien, R. M., 2007. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 41: 673–690.Google Scholar
  62. Ometo, J. P. H., L. A. Martinelli, M. V. Ballester, A. Gessner, A. V. Krusche, R. L. Victoria & M. Williams, 2000. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, south-east Brazil. Freshwater Biology 44: 327–337.Google Scholar
  63. Pander, J., M. Mueller & J. Geist, 2015a. A comparison of four stream substratum restoration techniques concerning interstitial conditions and downstream effects. River Research and Applications 31: 239–255.Google Scholar
  64. Pander, J., M. Mueller & J. Geist, 2015b. Succession of fish diversity after reconnecting a large floodplain to the upper Danube River. Ecological Engineering 75: 41–50.Google Scholar
  65. Peckarsky, B. L., 1985. Do predaceous stoneflies and siltation affect the structure of stream insect communities colonizing enclosures? Canadian Journal of Zoology 63: 1519–1530.Google Scholar
  66. Pimentel, D., C. Harvey, P. Resosudarmo, K. Sinclair, D. Kurz, M. McNair, S. Crist, L. Shpritz, L. Fitton, R. Saffouri & R. Blair, 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267: 1117–1123.PubMedGoogle Scholar
  67. Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104: 5732–5737.Google Scholar
  68. R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed on 20 November 2018).
  69. Regh, K. J., A. I. Packman & J. Ren, 2005. Effects of suspended sediment characteristics and bed sediment transport on streambed clogging. Hydrological Processes 19: 413–427.Google Scholar
  70. Rempel, L. L., J. S. Richardson & M. C. Healey, 2000. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology 45: 57–73.Google Scholar
  71. Roni, P., T. J. Beechie, R. E. Bilby, F. E. Leonetti, M. M. Pollock & G. R. Pess, 2002. A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds. North American Journal of Fisheries Management 22: 1–20.Google Scholar
  72. Rosenberg, D. M. & A. P. Wiens, 1978. Effects of sediment addition on macrobenthic invertebrates in a northern Canadian river. Water Research 12: 753–763.Google Scholar
  73. Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156.Google Scholar
  74. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.Google Scholar
  75. Smol, J. P. & E. F. Stoermer, 2010. The Diatoms. Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge.Google Scholar
  76. Soulsby, C., A. Youngson, H. Moir & I. Malcolm, 2001. Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. Science of the Total Environment 265: 295–307.PubMedGoogle Scholar
  77. Spaulding, S. A., D. J. Lubinski & M. Potapova, 2010. Diatoms of the United States. (accessed on 9 December 2016).
  78. Sternecker, K., R. Wild & J. Geist, 2013. Effects of substratum restoration on salmonid habitat quality in a subalpine stream. Environmental Biology of Fishes 96: 1341–1351.Google Scholar
  79. Sternecker, K., M. Denic & J. Geist, 2014. Timing matters: species-specific interactions between spawning time, substrate quality, and recruitment success in three salmonid species. Ecology and Evolution 4: 2749–2758.PubMedPubMedCentralGoogle Scholar
  80. Townsend, C. R., C. Arbuckle, T. Crowl & M. Scarsbrook, 1997. The relationship between land use and physicochemistry, food resources and macroinvertebrate communities in tributaries of the Taieri River, New Zealand: a hierarchically scaled approach. Freshwater Biology 37: 177–191.Google Scholar
  81. Van Nieuwenhuyse, E. E. & J. D. LaPerriere, 1986. Effects of placer gold mining on primary production in subarctic streams of Alaska. Water Resources Bulletin 22: 91–99.Google Scholar
  82. Walser, C. A. & H. L. Bart, 1999. Influence of agriculture on in-stream habitat and fish community structure in Piedmont watersheds of the Chattahoochee River System. Ecology of Freshwater Fish 8: 237–246.Google Scholar
  83. Weijters, M. J., J. H. Janse, R. Alkemade & J. T. A. Verhoeven, 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 104–112.Google Scholar
  84. Wilson, H. F. & M. A. Xenopoulos, 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience 2: 37–41.Google Scholar
  85. Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmental Management 21: 203–217.PubMedGoogle Scholar
  86. Yamada, H. & F. Nakamura, 2002. Effect of fine sediment deposition and channel works on periphyton biomass in the Makomanai River, Northern Japan. River Research and Applications 18: 481–493.Google Scholar
  87. Zauner, G. & J. Eberstaller, 1999. Klassifizierungsschema der österreichischen Flußfischfauna in Bezug auf deren Lebensraumansprüche. Österreichs Fischerei 52: 198–205.Google Scholar
  88. Zuur, A. F., E. N. Ineo, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer Science and Business Media, New York, USA.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Aquatic Systems Biology Unit, Department of Ecology and Ecosystem ManagementTechnical University of MunichFreisingGermany

Personalised recommendations