Advertisement

Effects of cladoceran-conditioned medium on the demography of brachionid rotifers (Rotifera: Brachionidae)

  • Jose Luis Gama Flores
  • S. S. S. SarmaEmail author
  • Ana Nayeli López Rocha
  • S. Nandini
ROTIFERA XV

Abstract

Rotifers and cladocerans compete for resources in freshwater ecosystems. Cladocerans, due to their large size, are competitively superior to rotifers. Cladocerans also release secondary metabolites into the medium which may be allelopathic to rotifers. However, in many eutrophic water bodies, rotifers are competitively dominant to cladocerans. We therefore hypothesize that allelochemicals released by competing species of Cladocera have weak or no adverse effects on rotifers. To test this, we conducted cohort life table demography experiments of the three rotifers Brachionus calyciflorus, Brachionus havanaensis, and Plationus patulus with cladoceran-conditioned medium (CM) derived from Moina macrocopa, Ceriodaphnia dubia, and Daphnia pulex. All six zooplankton species were isolated at the same time from a shallow eutrophic water body in Central Mexico. We found that the following demographic variables of B. calyciflorus cultured in CM did not differ from controls: life expectancy at birth, gross and net reproductive rates, generation time and the rate of population increase. We further showed that B. havanaensis was most sensitive to the cladoceran-mediated chemicals and that M. macrocopa-CM caused varied demographic responses in rotifers. We conclude that cladoceran-conditioned medium had weak allelopathic effects on rotifers unlike the negative experience from direct physical contact with Cladocera.

Keywords

Allelopathy Demography Cladocera Rotifera Zooplankton 

Notes

Acknowledgements

We thank the handling editor(s) and the three anonymous reviewers for improving our presentation. This work was supported by a project from our university (PAPIIT- IN214618).

References

  1. Anaya, A. L., 1999. Allelopathy as a tool in the management of biotic resources in agroecosystems. Critical Reviews in Plant Sciences 18: 697–739.CrossRefGoogle Scholar
  2. Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal biotechnology. Cambridge University Press, London.Google Scholar
  3. Brönmark, C. & L.-A. Hansson (eds), 2012. Chemical ecology in aquatic systems. Oxford University Press, London.Google Scholar
  4. Burns, C. W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnology and Oceanography 13(4): 675-678.CrossRefGoogle Scholar
  5. Conde-Porcuna, J. M., 1998. Chemical interference by Daphnia on Keratella: a life table experiment. Journal of Plankton Research 20(8): 1637–1644.CrossRefGoogle Scholar
  6. de Moor, I. J., 2010. Toxic concentration of free ammonia to Brachionus calyciflorus Pallas, a rotifer pest species found in high rate algal ponds (HRAP’s). Journal of the Limnological Society of Southern Africa 10: 33–36.CrossRefGoogle Scholar
  7. Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55(3): 605–613.CrossRefGoogle Scholar
  8. Dodson, S. I. & D. G. Frey, 2001. Cladocera and other Branchiopoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates, 2nd ed. Academic Press, San Diego, San Francisco: 849–913.CrossRefGoogle Scholar
  9. Dumont, H. & S. Negrea, 2002. Introduction to the Class Branchiopoda. Guides to the identification of the microinvertebrates of the continental waters of the world. Backhuys Publishers, Kerkwerve.Google Scholar
  10. Ejsmont-Karabin, J., 1983. Ammonia nitrogen and inorganic phosphorus excretion by the planktonic rotifers. Hydrobiologia 104: 231–236.CrossRefGoogle Scholar
  11. Environment Canada, 1997. Problem formulation for Ammonia in the aquatic environment. Canadian Environmental Protection Act Priority Substances List 2. Version 5.0. Edmonton, Alberta.Google Scholar
  12. Gama-Flores, J. L., M. E. Huidobro-Salas, S. S. S. Sarma & S. Nandini, 2011. Effects of predator (Asplanchna) type and density on morphometric responses of Brachionus calyciflorus (Rotifera). Allelopathy Journal 27(2): 289–300.Google Scholar
  13. García, C. E., D. J. Chaparro-Herrera, S. Nandini & S. S. S. Sarma, 2007. Life history strategies of Brachionus havanaensis subject to kairomones of vertebrate and invertebrate predators. Chemistry and Ecology 23(4): 303–313.CrossRefGoogle Scholar
  14. Gayosso-Morales, M. A., S. Nandini, F. F. Martínez-Jeronimo & S. S. S. Sarma, 2017. Effect of organic and inorganic turbidity on the zooplankton community structure of a shallow waterbody in Central Mexico (Lake Xochimilco, Mexico). Journal of Environmental Biology 38(6): 1183–1196.CrossRefGoogle Scholar
  15. Gilbert, J. J., 1988. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnology and Oceanography 33: 1286–1303.CrossRefGoogle Scholar
  16. Gilbert, J. J., 2018. Morphological variation and its significance in a polymorphic rotifer: environmental, endogenous, and genetic controls. BioScience 68: 169–181.CrossRefGoogle Scholar
  17. Gross, E. M., C. Legrand, K. Rengefors & U. Tillmann, 2012. Allelochemical interactions among aquatic primary producers. In Brönmark, C. & L.-A. Hansson (eds), Chemical Ecology in Aquatic Systems. Oxford University Press, London: 196–209.CrossRefGoogle Scholar
  18. Guo, R., T. W. Snell & J. Yang, 2011. Ecological strategy of rotifer (Brachionus calyciflorus) exposed to predator- and competitor-conditioned media. Hydrobiologia 658: 163–171.CrossRefGoogle Scholar
  19. Kammenga, J. & R. Laskowski (eds), 2000. Demography in ecotoxicology. Wiley, New York.Google Scholar
  20. Krebs, C. J., 1985. Ecology; the experimental analysis of distribution and abundance, 3rd ed. Harper & Row, New York.Google Scholar
  21. Loose, C. J., E. von Elert & P. Dawidowicz, 1993. Chemically-induced diel vertical migration in Daphnia: a new bioassay for kairomones exuded by fish. Archiv für Hydrobiologie 126: 329–337.Google Scholar
  22. Lürling, M., 2003. Effects of microcystin-free and microcystin-containing strains of the cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna. Environmental Toxicology 18: 202–210.CrossRefGoogle Scholar
  23. MacIsaac, H. J. & J. J. Gilbert, 1989. Competition between rotifers and cladocerans of different body sizes. Oecologia 81: 295–301.CrossRefGoogle Scholar
  24. Matveev, V., 1993. An investigation of allelopathic effects of Daphnia. Freshwater Biology 29: 99–105.CrossRefGoogle Scholar
  25. Mitchell, S. E. & G. R. Carvalho, 2002. Comparative demographic impacts of `info-chemicals’ and exploitative competition: an empirical test using Daphnia magna. Freshwater Biology 47: 459–471.CrossRefGoogle Scholar
  26. Nandini, S., P. Ramírez-García & S. S. S. Sarma, 2005. Seasonal variations in the species diversity of planktonic rotifers in Lake Xochimilco, Mexico. Journal of Freshwater Ecology 20(2): 287–294.CrossRefGoogle Scholar
  27. Nandini, S., P. Ramírez-García & S. S. S. Sarma, 2016. Water quality indicators in Lake Xochimilco, Mexico: zooplankton and Vibrio cholera. Journal of Limnology 75: 91–100.Google Scholar
  28. Pavón-Meza, E. L., S. S. S. Sarma & S. Nandini, 2005. Combined effects of algal (Chlorella vulgaris) food level and temperature on the demography of Brachionus havanaensis (Rotifera): a life table study. Hydrobiologia 546: 353–360.CrossRefGoogle Scholar
  29. Ramírez-García, P., S. Nandini, S. S. S. Sarma, E. Robles-Valderrama, I. Cuesta & D. Hurtado-Maria, 2002. Seasonal variations of zooplankton abundance in the freshwater reservoir Valle de Bravo (Mexico). Hydrobiologia 467: 99–108.CrossRefGoogle Scholar
  30. Sánchez Rodríguez, M. R., L. A. N. Avila, S. S. S. Sarma, S. Nandini & A. L. Vásquez, 2010. Allelopathic effects of ciliate (Paramecium caudatum) (Ciliophora) culture filtrate on the population growth of brachionid rotifers (Rotifera: Brachionidae). Allelopathy Journal 26(1): 123–130.Google Scholar
  31. Sarma, S. S. S. & S. Nandini, 2018. Allelopathic interactions in freshwater ecosystems with special reference to zooplankton. In Kaul, B. L. (ed.), Advances in Fish and Wildlife Ecology and Biology, Vol. 7. Astral International Pvt. Ltd., New Delhi: 195–221.Google Scholar
  32. Sarma, S. S. S., S. Nandini & R. D. Gulati, 2005. Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542: 315–333.CrossRefGoogle Scholar
  33. Sarma, S. S. S., J. A. Guevara-Franco, B. Almaraz-Ornelas & S. Nandini, 2018. Interspecific effects of allelochemicals of four species of Brachionidae (Rotifera: Monogononta) on the population growth. Allelopathy Journal 45(2): 277–290.CrossRefGoogle Scholar
  34. Schlüter, M. & J. Groeneweg, 1985. The inhibition by ammonia of population growth of the rotifer, Brachionus rubens, in continuous culture. Aquaculture 46(3): 215–220.CrossRefGoogle Scholar
  35. Seitz, A., 1984. Are there allelopathic interactions in zooplankton? Laboratory experiments with Daphnia. Oecologia 62: 94–96.CrossRefGoogle Scholar
  36. Snell, T. W., 1998. Chemical ecology of rotifers. Hydrobiologia 387(388): 267–276.CrossRefGoogle Scholar
  37. Snell, T. W., 2017. Analysis of proteins in conditioned medium that trigger monogonont rotifer mictic reproduction. Hydrobiologia 796: 245–253.CrossRefGoogle Scholar
  38. Stephan-Otto, E. (ed.), 2003. El agua en la cuenca de México: Sus problemas históricos y perspectivas de solución. Asociación Internacional de Investigadores de Xochimilco. A. C., Parque Ecológico de Xochimilco. Vol. 1 Universidad Autónoma Metropolitana, Mexico City, Mexico.Google Scholar
  39. Tollrian, R. & C. D. Harvell (eds), 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.Google Scholar
  40. van Daalen, S. F. & H. Caswell, 2017. Lifetime reproductive output: individual stochasticity, variance, and sensitivity analysis. Theoretical Ecology 10: 355–374.CrossRefGoogle Scholar
  41. Vet, L. E. M., 1999. From chemical to population ecology: infochemical use in an evolutionary context. Journal of Chemical Ecology 25: 31–49.CrossRefGoogle Scholar
  42. Wallace, R. L., T. W. Snell & H. A. Smith, 2015. Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds), Thorp and Covich’s Freshwater Invertebrates. Elsevier, Waltham: 225–271.CrossRefGoogle Scholar
  43. Weber, C.I., 1993. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 4th ed. United States Environmental Protection Agency, Cincinnati, Ohio, EPA/600/4-90/027F.Google Scholar
  44. Xi, Y. L. & A. Hagiwara, 2007. Competition between the rotifer Brachionus calyciflorus and the cladoceran Moina macrocopa in relation to algal food concentration and initial rotifer population density. Journal of Freshwater Ecology 22: 421–427.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidad Nacional Autónoma de MéxicoTlalnepantlaMexico

Personalised recommendations