, Volume 830, Issue 1, pp 17–31 | Cite as

Cyanobacterial diversity in the algal–bacterial consortia from Subarctic regions: new insights from the rock baths at White Sea Coast

  • A. Kublanovskaya
  • K. ChekanovEmail author
  • A. Solovchenko
  • E. Lobakova
Primary Research Paper


Cyanobacteria characterized by exceptional tolerance to environmental stresses often become pioneer settlers in habitats with harsh conditions. There, they can constitute the core of microbial communities. The taxonomic composition of the cyanobacterial component of algal–bacterial consortia dwelling in a habitat with particularly harsh conditions (rock baths at the coast of Kandalaksha Bay of the White Sea) has been elucidated for the first time. Two workflows of the taxonomic analysis of the cyanobacteria were tested including the combinations of two programs and two databases (QIIME+Greengenes and Usearch+NCBI GenBank). Our results obviated the need of the using of a complex approach combining morphological and metagenomic analyses for revealing the taxonomic structure of cyanobacteria in natural habitats. Our results show that the cyanobacterial component of the consortia from the habitats with harsh and highly volatile environmental conditions is enriched with non-diazotrophic and diazotrophic non-branched filamentous cyanobacteria.


Algal–bacterial consortia Cyanobacteria Metagenome Polyphasic approach 



Gene of 16S ribosomal RNA


Neighbor-joining algorithm


Polymerase chain reaction


Operation taxonomic unit


Workflow of sequence data analysis in QIIME software and homolog search in the Greengenes database


Workflow of sequence data analysis in Usearch software and homolog search in the GenBank NCBI database



Microscopic studies were carried out using equipment at the Center of Microscopy of White Sea Biological Station of Moscow State University. This work was supported partially by the Ministry of Science and Education of the Russian Federation (Grant Number 02.a03.21.0008 of 24 June 2016) and partially by Council for Grants of the President of the Russian Federation. The dedicated technical assistance of Dr. Yuriy Khlopko is greatly appreciated.

Supplementary material

10750_2018_3844_MOESM1_ESM.pdf (481 kb)
Supplementary material 1 (PDF 481 kb)


  1. Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.CrossRefGoogle Scholar
  2. Bates, S. T., D. Berg-Lyons, J. G. Caporaso, W. A. Walters, R. Knight & N. Fierer, 2011. Examining the global distribution of dominant archaeal populations in soil. The ISME Journal 5: 908–917.CrossRefGoogle Scholar
  3. Baulina, O. I., 2012. Ultrastructural Plasticity of Cyanobacteria. Springer, New York: 202.CrossRefGoogle Scholar
  4. Belevich, T. A., L. V. Ilyash, I. A. Milyutina, M. D. Logacheva, D. V. Goryunov & A. V. Troitsky, 2015. Metagenomic analyses of White Sea picoalgae: first data. Biochemistry 80: 1514–1521.PubMedGoogle Scholar
  5. Belevich, T. A., L. V. Ilyash, I. A. Milyutina, M. D. Logacheva & A. V. Troitsky, 2017. Phototrophic picoeukaryotes of Onega Bay, the White Sea: abundance and species composition. Moscow University Biological Sciences Bulletin 72: 109–114.CrossRefGoogle Scholar
  6. Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell & D. L. Wheeler, 2008. GenBank. Nucleic Acids Research 36: D25–D30.CrossRefGoogle Scholar
  7. Burow, L. C., D. Woebken, B. M. Bebout, P. J. McMurdie, S. W. Singer, J. Pett-Ridge, et al., 2012. Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. The ISME Journal l 6: 863.CrossRefGoogle Scholar
  8. Burow, L. C., D. Woebken, I. P. Marshall, E. A. Lindquist, B. M. Bebout, L. Prufert-Bebout, et al., 2013. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics. The ISME Journal 74: 817.CrossRefGoogle Scholar
  9. Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, Peña A. Gonzalez, J. K. Goodrich, J. I. Gordon & G. A. Huttley, 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335–336.CrossRefGoogle Scholar
  10. Castenholz, R. W. & J. B. Waterbury, 1989. Taxa of the cyanobacteria. In Staley, J. T., M. P. Bryant, N. Pfenning & J. G. Holt (eds), Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore: 1727–1728.Google Scholar
  11. Chekanov, K., E. Lobakova, I. Selyakh, L. Semenova, R. Sidorov & A. Solovchenko, 2014. Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia). Marine Drugs 12: 4504–4520.CrossRefGoogle Scholar
  12. Comte, K., M. Šabacká, A. Carre-Mlouka, J. Elster & J. Komárek, 2007. Relationships between the Arctic and the Antarctic cyanobacteria: three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecology 59: 366–376.CrossRefGoogle Scholar
  13. DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu & G. L. Andersen, 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72: 5069–5072.CrossRefGoogle Scholar
  14. Dopazo, J., 1994. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. Journal of Molecular Evolution 38: 300–304.CrossRefGoogle Scholar
  15. Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.CrossRefGoogle Scholar
  16. Edgar, R. C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.CrossRefGoogle Scholar
  17. Edgar, R. C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10: 996–998.CrossRefGoogle Scholar
  18. Elster, J. & M. Šabacká, 2006. Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biology 30: 31–37.CrossRefGoogle Scholar
  19. Elster, J., J. Svoboda, S. Ohtani & H. Kanda, 2002. Feasibility studies on future phycological research in polar regions. Polar Bioscience 15: 114–122.Google Scholar
  20. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  21. Gorelova, O. A., I. A. Kosevich, O. I. Baulina, T. A. Fedorenko, A. Z. Torshkhoeva & E. S. Lobakova, 2009. Associations between the White Sea invertebrates and oxygen-evolving phototrophic microorganisms. Moscow University Biological Sciences Bulletin 64: 16–22.CrossRefGoogle Scholar
  22. Gorelova, O. A., O. I. Baulina, A. E. Solovchenko, T. A. Fedorenko, T. R. Kravtsova, O. B. Chivkunova, O. A. Koksharova & E. S. Lobakova, 2012. Green microalgae isolated from associations with white sea invertebrates. Microbiology 81: 505–507.CrossRefGoogle Scholar
  23. Gorelova, O. A., O. I. Baulina, I. A. Kosevich & E. S. Lobakova, 2013. Associations between the White Sea colonial hydroid Dynamena pumila and microorganisms. Journal of the Marine Biological Association of the United Kingdom 93: 69–80.CrossRefGoogle Scholar
  24. Gorelova, O. A., O. I. Baulina, A. E. Solovchenko, K. A. Chekanov, O. B. Chivkunova, T. A. Fedorenko & E. S. Lobakova, 2015. Similarity and diversity of the Desmodesmus spp. microalgae isolated from associations with White Sea invertebrates. Protoplasma 252: 489–503.CrossRefGoogle Scholar
  25. Guiry, M. D., & Guiry, G. M., 2018. AlgaeBase [Internet]. Galway: World-Wide Electronic Publication, National University of Ireland; [available on internet at].
  26. Hašler, P., P. Dvořák, J. R. Johansen, M. Kitner, V. Ondřej & A. Poulíčková, 2012. Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea 12: 341–356.CrossRefGoogle Scholar
  27. Hauer, T., M. Bohunická, J. R. Johansen, J. Mareš & E. Berrendero-Gomez, 2014. Reassessment of the cyanobacterial family Microchaetaceae and establishment of new families Tolypothrichaceae and Godleyaceae. Journal of Phycology 50: 1089–1100.CrossRefGoogle Scholar
  28. Ininbergs, K. B., J. Larsson & M. Ekman, 2015. Microbial metagenomics in the Baltic Sea: recent advancements and prospects for environmental monitoring. Ambio 44: 439–450.CrossRefGoogle Scholar
  29. Ishida, T., M. M. Watanabe, J. Sugiyama & A. Yokota, 2001. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiology Letters 201: 79–82.CrossRefGoogle Scholar
  30. Ismagulova, T., K. Chekanov, O. Gorelova, O. Baulina, L. Semenova, I. Selyakh, O. Chivkunova, E. Lobakova, O. Karpova & A. Solovchenko, 2018. A new subarctic strain of Tetradesmus obliquus – part I: identification and fatty acid profiling. Journal of Applied Phycology 30(5): 2737–2750.CrossRefGoogle Scholar
  31. Kim, M., K. H. Lee, S. W. Yoon, B. S. Kim, J. Chun & H. Yi, 2013. Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics & informatics 11: 102–113.CrossRefGoogle Scholar
  32. Komárek, J., 2015. About endemism of cyanobacteria in freshwater habitats of maritime Antarctica. Algological Studies 148: 15–32.CrossRefGoogle Scholar
  33. Komárek, J., 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology 51: 346–353.CrossRefGoogle Scholar
  34. Komárek, J., 2018. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 811: 7–17.CrossRefGoogle Scholar
  35. Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota. 2. Oscillatoriales. In Büdel, B., L. Krienitz, G. Gärtner & M. Schagerl (eds), Süsswasserflora von Mitteleuropa 19. Elsevier/Spektrum, Heidelberg: 759.Google Scholar
  36. Komárek, J. & Hauer, T., 2013. CyanoDB. cz. On-line database of cyanobacterial genera. Word-wide electronic publication, University of South Bohemia and Institute of Botany AS CR [available on internet at].
  37. Komárek, J., J. Kaštovský, J. Mareš & J. R. Johansen, 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 86: 295–335.Google Scholar
  38. Krasnova, E. D., A. N. Pantyulin, D. N. Matorin, D. A. Todorenko, T. A. Belevich, I. A. Milyutina & D. A. Voronov, 2014. Cryptomonad alga Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) bloom in the redox zone of the basins separating from the White Sea. Microbiology 83: 270–277.CrossRefGoogle Scholar
  39. Krasnova, E. D., A. V. Kharcheva, I. A. Milyutina, D. A. Voronov & S. V. Patsaeva, 2015. Study of microbial communities in redox zone of meromictic lakes isolated from the White Sea using spectral and molecular methods. Journal of the Marine Biological Association of the United Kingdom 95: 1579–1590.CrossRefGoogle Scholar
  40. Maccario, L., T. M. Vogel & C. Larose, 2014. Potential drivers of microbial community structure and function in Arctic spring snow. Frontiers in Microbiology 5: 413.CrossRefGoogle Scholar
  41. Mueller, D. R., W. F. Vincent, S. Bonilla & I. Laurion, 2005. Extremophiles, extremotrophs and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiology Ecology 53: 73–87.CrossRefGoogle Scholar
  42. Nikolaev, Yu A & V. K. Plakunov, 2007. Biofilm – “City of microbes” or an analogue of multicellular organisms? Microbiology 76: 125–138.CrossRefGoogle Scholar
  43. Nozhevnikova, A. N., E. A. Botchkova & V. K. Plakunov, 2015. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology 84: 731–750.CrossRefGoogle Scholar
  44. Paerl, H. W. & J. L. Pinckney, 1996. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecology 31: 225–247.CrossRefGoogle Scholar
  45. Palinska, K. A., J. C. Vogt & W. Surosz, 2017. Biodiversity analysis of the unique geothermal microbial ecosystem of the Blue Lagoon (Iceland) using next-generation sequencing (NGS). Hydrobiologia 811: 93–102.CrossRefGoogle Scholar
  46. Pesciaroli, C., F. Cupini, L. Selbmann, P. Barghini & M. Fenice, 2012. Temperature preferences of bacteria isolated from seawater collected in Kandalaksha Bay, White Sea, Russia. Polar Biology 35: 435–445.CrossRefGoogle Scholar
  47. Pesciaroli, C., B. Rodelas, B. Juarez-Jiménez, P. Barghini & M. Fenice, 2015a. Bacterial community structure of a coastal area in Kandalaksha Bay, White Sea, Russia: possible relation to tidal hydrodynamics. Annals of Microbiology 65: 443–453.CrossRefGoogle Scholar
  48. Pesciaroli, C., P. Barghini, F. Cerfolli, B. Bellisario & M. Fenice, 2015b. Relationship between phylogenetic and nutritional diversity in Arctic (Kandalaksha Bay) seawater planktonic bacteria. Annals of Microbiology 65: 2405–2414.CrossRefGoogle Scholar
  49. Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman & R. Y. Stanier, 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111: 1–61.CrossRefGoogle Scholar
  50. Rzhetsky, A. & M. Nei, 1992. A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution 9: 945–967.Google Scholar
  51. Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.PubMedGoogle Scholar
  52. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.CrossRefGoogle Scholar
  53. Taton, A., A. Wilmotte, J. Šmarda, J. Elster & J. Komárek, 2011. Plectolyngbya hodgsonii: a novel filamentous cyanobacterium from Antarctic lakes. Polar Biology 34: 181–191.CrossRefGoogle Scholar
  54. Varin, T., C. Lovejoy, A. D. Jungblut, W. F. Vincent & J. Corbeil, 2012. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Applied and Environmental Microbiology 78: 549–559.CrossRefGoogle Scholar
  55. Vincent, W. F., 2000. Cyanobacterial dominance in the dominance in the polar regions. In Whitton, B. A. & M. Potts (eds), Ecology of the Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht: 321–340.Google Scholar
  56. Vincent, W. F., 2007. Cold tolerance in cyanobacteria and life in the cryosphere. In Seckbach, J. (ed.), Algae and Cyanobacteria in Extreme Environments. Springer, Heidelberg: 287–301.CrossRefGoogle Scholar
  57. Vogt, J. C., D. C. Albach & K. A. Palinska, 2018. Cyanobacteria of the Wadden Sea: seasonality and sediment influence on community composition. Hydrobiologia 811: 103–117.CrossRefGoogle Scholar
  58. Wanigatunge, R. P., D. N. Magana-Arachchi, N. V. Chandrasekharan & S. A. Kulasooriya, 2014. Genetic diversity and molecular phylogeny of cyanobacteria from Sri Lanka based on 16S rRNA gene. Environmental Engineering Research 19: 317–329.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Bioengineering, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Centre for Humanities Research and TechnologyNational Research Nuclear University MEPhiMoscowRussia
  3. 3.Eurasian Center for Food SecurityLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations