, Volume 829, Issue 1, pp 265–280 | Cite as

Trophic niche segregation among herbivorous serrasalmids from rapids of the lower Xingu River, Brazilian Amazon

  • Marcelo C. AndradeEmail author
  • Daniel B. Fitzgerald
  • Kirk O. Winemiller
  • Priscilla S. Barbosa
  • Tommaso Giarrizzo
Primary Research Paper


In the Amazon Basin, several species of herbivorous serrasalmid fishes inhabit rapids, but it is unknown if they partition food resources during the annual low-water period when fish densities are high within greatly reduced volume of aquatic habitat. We investigated the trophic ecology of juveniles and adults of three species, Myleus setiger, Ossubtus xinguense, and Tometes kranponhah, common in rapids of the Xingu River during the low-water period. Diets, stable isotope ratios of muscle tissue, and functional traits were analyzed for 59 specimens of M. setiger, 175 of O. xinguense and 215 of T. kranponhah. The three species overlapped in dietary and isotopic space, with adult O. xinguense being most divergent. Juvenile and adult T. kranponhah and juvenile O. xinguense, two groups with broad diets, had lowest trophic positions estimated from isotopic data. Adult O. xinguense had the highest trophic position despite having large amounts of Podostemaceae in the diet. High trophic overlap during the low-water period suggests that either food resources are not limiting, or niches are partitioned by other means. Differences in functional traits of the three serrasalmids could be associated with differential efficiencies of swimming and feeding within microhabitats that vary according to water velocity and/or structural complexity.


Dietary analysis Herbivory Niche overlap Niche partitioning Ontogenetic niche shift 



The authors are grateful to Caroline C. Arantes, Friedrich W. Keppeler, Gustavo Hallwass, and Ralf Schwamborn for providing valuable suggestions to improve the manuscript. MCA and PSB were funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. MCA received Doctoral Sandwich Program Abroad (PDSE CAPES # 6666/2015-9) and National Program for Post-Doctoral (PNPD CAPES # 2017-6). DBF and KOW acknowledge support from the US National Science Foundation (DEB 1257813 and IGERT 0654377), the Estate of George and Carolyn Kelso via the International Sportfish Fund (KOW), and Merit, Excellence, and Tom Slick fellowships from Texas A&M University (DBF). TG acknowledges grants from the Brazilian government (CNPq # 308278/2012-7), and (FAPESPA # 011/2015).

Compliance with ethical standards

The study complied with approved institutional protocol for animal use in research TAMU AUP IACUC 2014-0234.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2018_3838_MOESM1_ESM.docx (12.1 mb)
Supplementary material 1 (DOCX 12344 kb)
10750_2018_3838_MOESM2_ESM.xlsx (12 kb)
Supplementary material 2 (XLSX 12 kb)
10750_2018_3838_MOESM3_ESM.xlsx (15 kb)
Supplementary material 3 (XLSX 15 kb)


  1. Andrade, M. C., T. Giarrizzo & M. Jégu, 2013. Tometes camunani (Characiformes: Serrasalmidae), a new species of phytophagous fish from the Guiana Shield, rio Trombetas basin, Brazil. Neotropical Ichthyology 11: 297–306.CrossRefGoogle Scholar
  2. Andrade, M., A. Jesus & T. Giarrizzo, 2015. Length-weight relationships and condition factor of the eaglebeak pacu Ossubtus xinguense Jégu, 1992 (Characiformes, Serrasalmidae), an endangered species from Rio Xingu rapids, northern Brazil. Brazilian Journal of Biology 75: S102–S105.CrossRefGoogle Scholar
  3. Andrade, M. C., M. Jégu & T. Giarrizzo, 2016a. Tometes kranponhah and Tometes ancylorhynchus (Characiformes: Serrasalmidae), two new phytophagous serrasalmids, and the first Tometes species described from the Brazilian Shield. Journal of Fish Biology 89: 467–494.CrossRefGoogle Scholar
  4. Andrade, M. C., M. Jégu, & T. Giarrizzo, 2016b. A new large species of Myloplus (Characiformes, Serrasalmidae) from the Rio Madeira basin, Brazil. Zookeys 153–167.Google Scholar
  5. Andrade, M. C., L. M. Sousa, R. P. Ota, M. Jégu & T. Giarrizzo, 2016c. Redescription and geographical distribution of the endangered fish Ossubtus xinguense Jégu 1992 (Characiformes, Serrasalmidae) with comments on conservation of the rheophilic fauna of the Xingu River. PLoS ONE 11: e0161398.CrossRefGoogle Scholar
  6. Arrington, D. A. & K. O. Winemiller, 2002. Preservation effects on stable isotope analysis of fish muscle. Transactions of the American Fisheries Society 131: 337–342.CrossRefGoogle Scholar
  7. Birindelli, J. L. O. & H. A. Britski, 2013. Two new species of Leporinus (Characiformes: Anostomidae) from the Brazilian Amazon, and redescription of Leporinus striatus Kner 1858. Journal of Fish Biology 83: 1128–1160.CrossRefGoogle Scholar
  8. Burress, E. D., 2014. Cichlid fishes as models of ecological diversification: patterns, mechanisms, and consequences. Hydrobiologia 748: 7–27.CrossRefGoogle Scholar
  9. Busst, G. M. A., & J. R. Britton, 2017. Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia,
  10. Carvalho, L. N., J. Zuanon, & I. Sazima, 2007. Natural history of amazon fishes. International Commission on Tropical Biology and Natural Resources 1–32.Google Scholar
  11. Caut, S., E. Angulo & F. Courchamp, 2009. Variation in discrimination factors (Δ15 N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46: 443–453.CrossRefGoogle Scholar
  12. Chakrabarty, P., & W. L. Fink, 2011. Piranha 3D. By Alexandre Aja (director). Copeia 2011: 181.Google Scholar
  13. Clarke, K. R., & R. N. Gorley, 2015. PRIMER v7: User Manual/Tutorial. Plymouth, 296.Google Scholar
  14. Conway, K. W., N. K. Lujan, J. G. Lundberg, R. L. Mayden & D. S. Siegel, 2012. Microanatomy of the paired-fin pads of ostariophysan fishes (Teleostei: Ostariophysi). Journal of Morphology 273: 1127–1149.CrossRefGoogle Scholar
  15. Correa, S. B. & K. O. Winemiller, 2014. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95: 210–224.CrossRefGoogle Scholar
  16. Correa, S. B., K. O. Winemiller, H. López-Fernández & M. Galetti, 2007. Evolutionary perspectives on seed consumption and dispersal by fishes. BioScience 57: 748–756.CrossRefGoogle Scholar
  17. Correa, S. B., R. Betancur-R, B. de Mérona & J. W. Armbruster, 2014. Diet shift of red belly pacu Piaractus brachypomus (Cuvier, 1818) (Characiformes: Serrasalmidae), a Neotropical fish, in the Sepik-Ramu River Basin, Papua New Guinea. Neotropical Ichthyology 12: 827–833.CrossRefGoogle Scholar
  18. Correa, S. B., K. Winemiller & D. Cárdenas, 2016. Isotopic variation among Amazonian floodplain woody plants and implications for food-web research. Biota Neotropica 16: e20150078.CrossRefGoogle Scholar
  19. Delong, M. D. & M. C. Thoms, 2016. Changes in the trophic status of fish feeding guilds in response to flow modification. Journal of Geophysical Research: Biogeosciences 121: 949–964.Google Scholar
  20. Dias, T. S. & C. B. Fialho, 2011. Comparative dietary analysis of Eurycheilichthys pantherinus and Pareiorhaphis hystrix: two Loricariidae species (Ostariophysi, Siluriformes) from Campos Sulinos biome, southern Brazil. Iheringia. Série Zoologia 101: 49–55.CrossRefGoogle Scholar
  21. Døving, K. B., M. Dubois-Dauphin, A. Holley & F. Jourdan, 1977. Functional anatomy of the olfactory organ of fish and the ciliary mechanism of water transport. Acta Zoologica 58: 245–255.CrossRefGoogle Scholar
  22. Fitzgerald, D. B., K. O. Winemiller, M. H. Sabaj Pérez & L. M. Sousa, 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98: 21–31.CrossRefGoogle Scholar
  23. Fitzgerald, D. B., M. H. Sabaj-Pérez, L. M. Sousa, A. P. Gonçalves, L. R. Py-Daniel, N. K. Lujan, J. Zuanon, K. O. Winemiller & J. G. Lundberg, 2018. Diversity and community structure of rapids-dwelling fishes of the Xingu River: Implications for conservation amid large-scale hydroelectric development. Biological Conservation 222: 104–112.CrossRefGoogle Scholar
  24. Gatz, A. J., 1979. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.Google Scholar
  25. Gatz, A. J., 1981. Morphologically inferred niche differentiation in stream fishes. The American Midland Naturalist 106: 10–21.CrossRefGoogle Scholar
  26. German, D. P. & R. D. Miles, 2010. Stable carbon and nitrogen incorporation in blood and fin tissue of the catfish Pterygoplichthys disjunctivus. Environemental Biology of Fishes 89: 117–133.CrossRefGoogle Scholar
  27. Gotelli, N. J., & A. M. Ellison, 2013. EcoSimR: null models for ecology, version 1.00,
  28. Goulding, M., 1980. The fishes and the forest: Explorations in Amazonian Natural History. University of California Press, Berkeley.Google Scholar
  29. Gracan, R., D. Zavodnik, P. Krstinic, B. Dragicevic & B. Lazar, 2016. Feeding ecology and trophic segregation of two sympatric mesopredatory sharks in the heavily exploited coastal ecosystem of the Adriatic Sea. Journal of Fish Biology 90: 1–18.Google Scholar
  30. Hoeinghaus, D. J., K. O. Winemiller & A. A. Agostinho, 2008. Hydrogeomorphology and river impoundment affect food-chain length of diverse Neotropical food webs. Oikos 117: 984–995.CrossRefGoogle Scholar
  31. Horeau, V., P. Cerdan, A. Champeau & S. Richard, 1998. Importance of aquatic invertebrates in the diet of rapids-dwelling fish in the Sinnamary River, French Guiana. Journal of Tropical Ecology 14: 851–864.CrossRefGoogle Scholar
  32. IUCN, 2018. The IUCN Red List of Threatened Species. Version 2018-1. Downloaded on 7 July 2018.Google Scholar
  33. Jackson, M. C. & J. R. Britton, 2014. Divergence in the trophic niche of sympatric freshwater invaders. Biological Invasions 16: 1095–1103.CrossRefGoogle Scholar
  34. Jackson, A. L., R. Inger, A. C. Parnell & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595–602.CrossRefGoogle Scholar
  35. Jégu, M. & P. Keith, 1999. Le bas Oyapock limite septentrionale ou simple etape dans la progression de la faune des poissons d’Amazonie occidentale. Comptes Rendus de l’Academie des Sciences 322: 1133–1143.Google Scholar
  36. Jégu, M. & G. M. dos Santos, 2002. Révision du statut de Myleus setiger Müller & Troschel, 1844 et de Myleus knerii (Teleostei: Characidae: Serrasalminae) avec une description complémentaire des deux espèces. Cybium 26: 33–57.Google Scholar
  37. Jégu, M. & J. Zuanon, 2005. Threatened fishes of the world: Ossubtus xinguense (Jégu 1992) (Characidae: Serrasalminae). Environmental Biology of Fishes 73: 414.CrossRefGoogle Scholar
  38. Jégu, M., G. M. dos Santos & E. Ferreira, 1989. Une nouvelle espèce du genre Mylesinus (Pisces, Serrasalmidae), M. paraschomburgkii, décrite des bassins du Trombetas et du Uatumã (Brésil, Amazonie). Revue d’Hydrobiologie Tropicale 22: 49–62.Google Scholar
  39. Jégu, M., P. Keith, & E. Belmont-Jégu, 2002. Une nouvelle espèce de Tometes (Teleostei: Characidae: Serrasalminae) du bouclier guyanais, Tometes lebaili n. sp. Bulletin Francais De La Peche Et De La Pisciculture 23–48.Google Scholar
  40. Jégu, M., P. Keith & P. Y. Le Bail, 2003. Myloplus planquettei sp. n. (Teleostei, Characidae), une nouvelle espèce de grand Serrasalminae phytophage du bouclier guyanais. Revue Suisse De Zoologie 110: 833–853.CrossRefGoogle Scholar
  41. Jepsen, D. B. & K. O. Winemiller, 2007. Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers. Ecology of Freshwater Fish 16: 267–281.CrossRefGoogle Scholar
  42. Junk, W. J. & M. G. M. Soares, 2001. Freshwater fish habitats in Amazonia: state of knowledge, management, and protection. Aquatic Ecosystem Health & Management 4: 437–451.CrossRefGoogle Scholar
  43. Kassambara, A., & F. Mundt, 2016. Package “factoextra”. R package version 1.0.3,
  44. Kawakami, E. & G. Vazzoler, 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Brazilian Journal of Oceanography 29: 205–207.CrossRefGoogle Scholar
  45. Kluender, E. R., R. Adams & L. Lewis, 2017. Seasonal habitat use of alligator gar in a river-floodplain ecosystem at multiple spatial scales. Ecology of Freshwater Fish 26: 233–246.CrossRefGoogle Scholar
  46. Krebs, C. J., 1999. Ecological methodology. Benjamin Cummings, New York.Google Scholar
  47. Layman, C. A., D. A. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.CrossRefGoogle Scholar
  48. Legendre, P. & L. Legendre, 2012. Numerical ecology. Elsevier Science BV, Amsterdam.Google Scholar
  49. Leitão, R. P., J. I. Sánchez-Botero, D. Kasper, V. Trivério-Cardoso, C. M. Araújo, J. Zuanon & É. P. Caramaschi, 2015. Microhabitat segregation and fine ecomorphological dissimilarity between two closely phylogenetically related grazer fishes in an Atlantic Forest stream, Brazil. Environmental Biology of Fishes 98: 2009–2019.CrossRefGoogle Scholar
  50. Leite, R. G. & M. Jégu, 1990. Régime alimentaire de deux espèces d’Acnodon (Characiformes, Serrasalmidae) et habitudes lépidophages de A. normani. Cybium 14: 353–360.Google Scholar
  51. Lincoln, R. J., G. A. Boxshall & P. F. Clark, 1985. A dictionary of ecology, evolution, and systematics. Cambridge University Press, New York.Google Scholar
  52. Loubens, G. & J. Panfili, 1997. Biologie de Colossoma macropomum (Teleostei: Serrasalmidae) dans le bassin du Mamoré (Amazonie bolivienne). Ichthyological Exploration of Freshwaters 8: 1–22.Google Scholar
  53. Loubens, G. & J. Panfili, 2001. Biologie de Piaractus brachypomus (Teleostei: Serrasalmidae) dans le bassin du Mamoré (Amazonie bolivienne). Ichthyological Exploration of Freshwaters 12: 51–64.Google Scholar
  54. Lowe-McConnell, R. H., 1987. Ecological studies in tropical fish communities. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  55. Lujan, N. K. & K. W. Conway, 2015. Life in the fast lane: a review of rheophily in freshwater fishes. In Riesch, R., M. Tobler & M. Plath (eds), Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments. Springer, Cham: 107–136.Google Scholar
  56. Lujan, N. K., K. O. Winemiller & J. W. Armbruster, 2012. Trophic diversity in the evolution and community assembly of loricariid catfishes. BMC Evolutionary Biology 12: e124.CrossRefGoogle Scholar
  57. Meunier, F., Y. Fermon, M. Jégu & P. Keith, 2004. Les piranhas et les kumaru: diversité et biologie. In Meunier, F. (ed.), Piranhas Enivrés. Des poissons et des Hommes en Guyane, SFI/RMN: 35–41.Google Scholar
  58. Montaña, C. G. & K. O. Winemiller, 2013. Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: Evidence from morphology, diet, and stable isotope analysis. Biological Journal of the Linnean Society 109: 146–164.CrossRefGoogle Scholar
  59. Montaña, C. G., K. O. Winemiller & A. Sutton, 2014. Intercontinental comparison of fish ecomorphology: null model tests of community assembly at the patch scale in rivers. Ecological Monographs 84: 91–107.CrossRefGoogle Scholar
  60. Moreira, S. S. & J. Zuanon, 2002. Dieta de Retroculus lapidifer (Perciformes: Cichlidae), um peixe reofílico do Rio Araguaia, estado do Tocantins, Brasil. Acta Amazonica 32: 691–705.Google Scholar
  61. Mouchet, M. A., M. D. M. Burns, A. M. Garcia, J. P. Vieira & D. Mouillot, 2013. Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): Environmental filtering consistently overshadows competitive exclusion. Oikos 122: 247–257.CrossRefGoogle Scholar
  62. National Red List, 2016. Brazilian Red List, Accessed 25 July 2018.
  63. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2017. Package “vegan”. Community Ecology Package Version 2.4-5.
  64. Pagezy, H., & M. Jégu, 2002. Valeur patrimoniale de Serrasalminae herbivores du haut Maroni (Guyane Française): approches biologique et socioculturelle en pays Wayana. Bulletin Francais de la Peche et de la Pisciculture 49–69.Google Scholar
  65. Pianka, E. R., 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4: 53–74.CrossRefGoogle Scholar
  66. R Development Core Team, 2017. R: A Language and Environment for Statistical Computing,
  67. Ross, S. T., 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia 1986: 352–388.CrossRefGoogle Scholar
  68. Sabaj Pérez, M. H., 2015. Where the Xingu bends and will soon break. American Scientist 103: 395–397.CrossRefGoogle Scholar
  69. Santos, G. M., S. S. Pinto & M. Jégu, 1997. Alimentação do pacu-cana, Mylesinus paraschomburgkii (Teleostei, Serrasalmidae) em rios da Amazônia brasileira. Revista Brasileira de Biologia 57: 311–315.Google Scholar
  70. Sazima, I., 1983. Scale-eating in characoids and other fishes. Environmental Biology of Fishes 9: 87–101.CrossRefGoogle Scholar
  71. Sazima, I. & F. A. Machado, 1990. Underwater observations of piranhas in western Brazil. Environmental Biology of Fishes 28: 17–31.CrossRefGoogle Scholar
  72. Skinner, M. M., A. A. Martin & B. C. Moore, 2016. Is lipid correction necessary in the stable isotope analysis of fish tissues? Rapid Communications in Mass Spectrometry 30: 881–889.CrossRefGoogle Scholar
  73. Stewart, D. J. & T. R. Roberts, 1976. An ecological and systematic survey of fishes in the rapids of the lower Zaïre or Congo River. Bulletin of the Museum of Comparative Zoology 147: 239–317.Google Scholar
  74. Tófoli, R. M., R. M. Dias, G. H. Zaia Alves, D. J. Hoeinghaus, L. C. Gomes, M. T. Baumgartner & A. A. Agostinho, 2017. Gold at what cost? Another megaproject threatens biodiversity in the Amazon. Perspectives in Ecology and Conservation 15: 129–131.CrossRefGoogle Scholar
  75. Trindade, M. E. D. & R. Juca-Chagas, 2008. Diet of two serrasalmin species, Pygocentrus piraya and Serrasalmus brandtii (Teleostei: Characidae), along a stretch of the rio de Contas, Bahia, Brazil. Neotropical Ichthyology 6: 645–650.CrossRefGoogle Scholar
  76. Vander Zanden, M. J., M. K. Clayton, E. K. Moody, C. T. Solomon & B. C. Weidel, 2015. Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS ONE 10: e0116182.CrossRefGoogle Scholar
  77. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15 N enrichment: A meta-analysis. Oecologia 136: 169–182.CrossRefGoogle Scholar
  78. Verwaijen, D., R. Van Damme & A. Herrel, 2002. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Functional Ecology 16: 842–850.CrossRefGoogle Scholar
  79. Vitorino Júnior, O. B., C. S. Agostinho & F. M. Pelicice, 2016. Ecology of Mylesinus paucisquamatus Jégu & Santos, 1988, an endangered fish species from the rio Tocantins basin. Neotropical Ichthyology 14: e150124.CrossRefGoogle Scholar
  80. Wagner, C. E., P. B. McIntyre, K. S. Buels, D. M. Gilbert & E. Michel, 2009. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Functional Ecology 23: 1122–1131.CrossRefGoogle Scholar
  81. Winemiller, K. O., 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61: 343–365.CrossRefGoogle Scholar
  82. Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, J. Petrere M., C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen, & L. Saenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129.Google Scholar
  83. Zaia Alves, G. H., D. J. Hoeinghaus, G. I. Manetta & E. Benedito, 2017. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains. PLoS ONE 12: e0174499.CrossRefGoogle Scholar
  84. Zeug, S. C. & K. O. Winemiller, 2008. Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89: 1733–1743.CrossRefGoogle Scholar
  85. Zuanon, J. & I. Sazima, 2002. Teleocichla centisquama, a new species of rapids-dwelling cichlid from Xingu River, Amazonia (Perciformes: Cichlidae). Ichthyological Exploration of Freshwaters 13: 373–378.Google Scholar
  86. Zuluaga-Gómez, M. A., D. B. Fitzgerald, T. Giarrizzo & K. O. Winemiller, 2016. Morphologic and trophic diversity of fish assemblages in rapids of the Xingu River, a major Amazon tributary and region of endemism. Environmental Biology of Fishes 99: 647–658.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ecologia Aquática e Pesca, Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
  2. 2.Program in Ecology and Evolutionary Biology, and Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA
  3. 3.Laboratório de Biologia Pesqueira e Manejo dos Recursos Aquáticos, Grupo de Ecologia AquáticaUniversidade Federal do Pará, Cidade Universitária Prof. José Silveira NettoBelémBrazil

Personalised recommendations