, Volume 829, Issue 1, pp 245–263 | Cite as

Concordance in biological condition and biodiversity between diatom and macroinvertebrate assemblages in Chinese arid-zone streams

  • Kai Chen
  • Dandan Sun
  • Abdul R. Rajper
  • Mahati Mulatibieke
  • Robert M. Hughes
  • Yangdong Pan
  • Aletai Tayibazaer
  • Qiuwen ChenEmail author
  • Beixin WangEmail author
Primary Research Paper


Understanding the concordance between aquatic assemblages in ecological assessments and their responses to human-induced disturbances are fundamental steps toward achieving sustainable stream and catchment management. Using diatom, macroinvertebrate, and environmental data collected from northwest Chinese arid-land streams, we tested the concordance between the two assemblages in (1) the assessment results using multimetric indices (MMIs), (2) the stressors affecting the MMIs and beta-diversity, and (3) the response trajectories of MMI and beta-diversity to disturbances. Random Forest analyses revealed that diatom and macroinvertebrate metrics responded most sensitively to climatic and geomorphic variables, respectively. Diatom MMI scores had greater precision and responsiveness than macroinvertebrate MMI scores. Diatom MMI scores were negatively related to gradients in observed–expected conductivity, chemical oxygen demand, and vegetated riparian zone width. Macroinvertebrate MMI scores responded strongly to observed–expected mean substrate composition, conductivity, and phosphate. Diatom beta-diversity decreased, as nitrate, channel alternation, and phosphate increased beyond expected natural background levels. Macroinvertebrate beta-diversity was the lowest when both nitrite and % cobble neared their natural background expectations. Our results indicate that protecting aquatic systems from anthropogenic pressures depends not only on revealing causes of impairment, but also on anticipating and understanding the responses to various stressors of multiple stream biotic assemblages.


MMI IBI Diversity Natural variability Stressors Random forest 



The authors are grateful to the National Natural Science Foundation of China (No. 51509159) and the National Grand Science and Technology Special Project of Water Pollution Control and Improvement (No. 2014ZX07204-006) for funding, and colleagues at the Laboratory of Aquatic Insects and Stream Ecology of Nanjing Agricultural University for assistance with macroinvertebrate sampling and processing, and for water chemistry analyses. The authors thank the editors and all anonymous referees for their valuable suggestions that helped improve the manuscript.

Supplementary material

10750_2018_3836_MOESM1_ESM.docx (5.6 mb)
Supplementary material 1 (DOCX 5784 kb)


  1. Al-Shami, S., J. Heino, M. R. Che Salmah, A. Abu Hassan, A. H. Suhaila & M. R. Madrus, 2013. Drivers of beta diversity of macroinvertebrate communities in tropical forest streams. Freshwater Biology 58: 1126–1137.Google Scholar
  2. Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.PubMedGoogle Scholar
  3. Angradi, T. R., M. S. Pearson, D. W. Bolgrien, T. M. Jicha, D. L. Taylor & B. H. Hill, 2009. Multimetric macroinvertebrate indices for mid-continent US great rivers. Journal of the North American Benthological Society 28: 785–804.Google Scholar
  4. Astorga, A., R. Death, F. Death, R. Paavola, M. Chakraborty & T. Muotka, 2014. Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecology and Evolution 4: 2693–2702.PubMedPubMedCentralGoogle Scholar
  5. Bae, M. J., F. Li, Y. S. Kwon, N. Chung, H. Choi, S. J. Hwang & Y. S. Park, 2014. Concordance of diatom, macroinvertebrate and fish assemblages in streams at nested spatial scales: implications for ecological integrity. Ecological Indicators 47: 89–101.Google Scholar
  6. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed. EPA 841–0B-99-002 US Environmental Protection Agency, Washington, DC.Google Scholar
  7. Beyene, A., T. Addis, D. Kifle, W. Legesse, H. Kloos & L. Triest, 2009. Comparative study of diatoms and macroinvertebrates as indicators of severe water pollution: case study of the Kebena and Akaki rivers in Addis Ababa, Ethiopia. Ecological Indicators 9: 381–392.Google Scholar
  8. Bini, L. M., V. L. Landeiro, A. A. Padial, T. Siqueira & J. Heino, 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95: 1569–1578.PubMedGoogle Scholar
  9. Bonada, N., C. Zamora-Munoz, M. Rieradevall & N. Prat, 2005. Ecological and historical filters constraining spatial caddisfly distribution in Mediterranean rivers. Freshwater Biology 50: 781–797.Google Scholar
  10. Bowman, M. F. & K. M. Somers, 2006. Evaluating a novel test site analysis (TSA) bioassessment approach. Journal of the North American Benthological Society 25: 712–727.Google Scholar
  11. Breiman, L., 2001. Random forests. Machine Learning 45: 5–32.Google Scholar
  12. Bryce, S. A., R. M. Hughes & P. R. Kaufmann, 2002. Development of a bird integrity index: using bird assemblages as indicators of riparian condition. Environmental Management 30: 294–310.PubMedGoogle Scholar
  13. Cañedo-Argüelles, M., C. P. Hawkins, B. J. Kefford, R. B. Schäfer, B. J. Dyack, S. Brucet, D. Buchwalter, J. Dunlop, O. Frör & J. Lazorchak, 2016. Saving freshwater from salts. Science 351: 914–916.PubMedGoogle Scholar
  14. Cao, Y., D. P. Larsen & R. M. Hughes, 2001. Evaluating sampling sufficiency in fish assemblage surveys: a similarity-based approach. Canadian Journal of Fisheries and Aquatic Sciences 58: 1782–1793.Google Scholar
  15. Cao, Y., C. P. Hawkins, J. R. Olson & M. A. Kosterman, 2007. Modeling natural environmental gradients improves the accuracy and precision of diatom-based indicators. Journal of the North American Benthological Society 26: 566–585.Google Scholar
  16. Carlisle, D. M., C. P. Hawkins, M. R. Meador, M. Potapova & J. Falcone, 2008. Biological assessments of Appalachian streams based on predictive models for fish, macroinvertebrate, and diatom assemblages. Journal of the North American Benthological Society 27: 16–37.Google Scholar
  17. Chen, K., R. M. Hughes, S. Xu, J. Zhang, D. Cai & B. Wang, 2014. Evaluating performance of macroinvertebrate-based adjusted and unadjusted multi-metric indices (MMI) using multi-season and multi-year samples. Ecological Indicators 36: 142–151.Google Scholar
  18. Chen, K., R. M. Hughes & B. Wang, 2015. Effects of fixed-count size on macroinvertebrate richness, site separation, and bioassessment of Chinese monsoonal streams. Ecological Indicators 53: 162–170.Google Scholar
  19. Chen, K., R. M. Hughes, J. G. Brito, C. G. Leal, R. P. Leitão, J. M. B. de Oliveira-Júnior, V. C. de Oliveira, K. Dias-Silva, S. F. B. Ferraz, J. Ferreira, N. Hamada, L. Juen, J. Nessimian, P. S. Pompeu & J. Zuanon, 2017. A multi-assemblage, multi-metric biological condition index for eastern Amazon streams. Ecological Indicators 78: 48–61.Google Scholar
  20. Chinnayakanahalli, K., C. Kroeber, R. A. Hill, D. G. Tarboton, J. R. Olson & C. P. Hawkins, 2006. The multi-watershed delineation tool: GIS software in support of regional watershed analyses. Utah State University, Logan.Google Scholar
  21. Cutler, D. R., T. C. Edwards Jr., K. H. Beard, A. Cutler, K. T. Hess, J. Gibson & J. J. Lawler, 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.PubMedGoogle Scholar
  22. Dolph, C. L., D. D. Huff, C. J. Chizinski & B. Vondracek, 2011. Implications of community concordance for assessing stream integrity at three nested spatial scales in Minnesota, USA. Freshwater Biology 56: 1652–1669.Google Scholar
  23. Drake, M. T. & R. D. Valley, 2005. Validation and application of a fish-based index of biotic integrity for small Central Minnesota lakes. North American Journal of Fisheries Management 25: 1095–1111.Google Scholar
  24. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. Prieur-Rivhard, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.PubMedGoogle Scholar
  25. Ferreira, W. R., L. U. Hepp, R. Ligeiro, D. R. Macedo, R. M. Hughes, P. R. Kaufmann & M. Callisto, 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecological Indicators 72: 365–373.Google Scholar
  26. Firmiano, K. R., R. Ligeiro, D. R. Macedo, L. Juen, R. M. Hughes & M. Callisto, 2017. Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecological Indicators 74: 276–284.Google Scholar
  27. Gardner, T. & 86 coauthors, 2013. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society of Britain B 368(1609): 20120166.Google Scholar
  28. Gioria, M., G. Bacaro & J. Feehan, 2011. Evaluating and interpreting cross-taxon congruence: potential pitfalls and solutions. Acta Oecologica 37: 187–194.Google Scholar
  29. Gregory, S. V., F. J. Swanson, W. A. McKee & K. W. Cummins, 1991. An ecosystem perspective of riparian zones. BioScience 41: 540–551.Google Scholar
  30. Gutiérrez-Cánovas, C., A. Millán, J. Velasco, I. P. Vaughan & S. J. Ormerod, 2013. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography 22: 796–805.Google Scholar
  31. Hastie, T., R. Tibshirani, J. Friedman & J. Franklin, 2005. The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer 27: 83–85.Google Scholar
  32. Hawkins, C. P., Y. Cao & B. Roper, 2010a. Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology 55: 1066–1085.Google Scholar
  33. Hawkins, C. P., J. R. Olson & R. A. Hill, 2010b. The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society 29: 312–343.Google Scholar
  34. Hawkins, C. P., H. Mykrä, J. Oksanen & J. J. Vander Laan, 2014. Environmental disturbance can increase beta diversity of stream macroinvertebrate assemblages. Global Ecology and Biogeography 24: 483–494.Google Scholar
  35. Heino, J., 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators 10: 112–117.Google Scholar
  36. Heino, J., M. Grönroos, J. Ilmonen, T. Karhu, M. Niva & L. Paasivirta, 2012. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science 32: 142–154.Google Scholar
  37. Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. Verdonschot, 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51: 1757–1785.Google Scholar
  38. Hughes, B., 2014. Livestock grazing in the West: sacred cows at the public trough revisited. Fisheries 39: 339–339.Google Scholar
  39. Hughes, R. M. & D. V. Peck, 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27: 837–859.Google Scholar
  40. Hughes, S. J., J. M. Santos, M. T. Ferreira, R. Caraça & A. M. Mendes, 2009. Ecological assessment of an intermittent Mediterranean river using community structure and function: evaluating the role of different organism groups. Freshwater Biology 54: 2383–2400.Google Scholar
  41. Hughes, R. M., A. T. Herlihy, W. J. Gerth & Y. Pan, 2012. Estimating vertebrate, benthic macroinvertebrate, and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environmental Monitoring and Assessment 184: 3185–3198.PubMedGoogle Scholar
  42. Jin, X., R. Zang, L. Cao, D. Chen & Z. Guo, 2008. Landscape pattern and fragmentation in Beitun of Irtysh River Basin, Xinjiang. Scientia Silvae Sinicae 44: 21–28.Google Scholar
  43. Johnson, R. K. & D. G. Angeler, 2014. Effects of agricultural land use on stream assemblages: taxon-specific responses of alpha and beta diversity. Ecological Indicators 45: 386–393.Google Scholar
  44. Johnson, R. K. & D. Hering, 2009. Response of taxonomic groups in streams to gradients in resource and habitat characteristics. Journal of Applied Ecology 46: 175–186.Google Scholar
  45. Johnson, R. K. & D. Hering, 2010. Spatial congruency of benthic diatom, invertebrate, macrophyte, and fish assemblages in European streams. Ecological Applications 20: 978–992.PubMedGoogle Scholar
  46. Johnson, R. A. & D. W. Wichern, 1992. Applied Multivariate Statistical Analysis. Prentice-Hall Press, New York.Google Scholar
  47. Klemm, D. J., K. A. Blocksom, F. A. Fulk, A. T. Herlihy, R. M. Hughes, P. R. Kaufmann, D. V. Peck, J. L. Stoddard, W. T. Thoeny & M. B. Griffith, 2003. Development and evaluation of a macroinvertebrate biotic integrity index (MBII) for regionally assessing Mid-Atlantic Highlands streams. Environmental Management 31: 656–669.PubMedGoogle Scholar
  48. Kondolf, G. M., 1997. Application of the pebble count: reflections on purpose, method, and variants. Transactions of the American Fisheries Society 33: 79–87.Google Scholar
  49. Leitão, R. P., J. Zuanon, D. Mouillot, C. G. Leal, R. M. Hughes, P. R. Kaufmann, S. Villéger, P. S. Pompeu, D. Kasper, F. R. de Paula, S. F. B. Ferraz & T. Gardner, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.PubMedPubMedCentralGoogle Scholar
  50. Lewis, B. R., L. Juttner, B. Reynolds & S. J. Ormerod, 2007. Comparative assessment of stream acidity using diatoms and macroinvertebrates: implications for river management and conservation. Aquatic Conservation 17: 502–519.Google Scholar
  51. Li, D., 1999. Hydrology characteristics in Irtysh river basin. Journal of China Hydrology 3: 50–54.Google Scholar
  52. Li, S. & J. Lei, 2002. The pattern and change of the ecosystems in the Ergis River watershed. Arid Zone Research 19: 56–61.Google Scholar
  53. Li, J., Z. Xia, L. Guo & X. Wang, 2008. Characteristics and trends of change in the climate of the Irtysh River Basin. Journal of Hohai University (Natural Sciences) 36: 311–315.Google Scholar
  54. Li, J., Q. Zhou, C. Xie, J. Wang & L. Wei, 2014. Studies on the community structure of periphyton in the Irtysh River of Xinjiang Uygur autonomous region. Acta Hydrobiologica Sinica 38: 1033–1039.Google Scholar
  55. Liaw, A. & M. Wiener, 2002. Classification and regression by randomForest. R news 2: 18–22.Google Scholar
  56. Ligeiro, R., A. S. Melo & M. Callisto, 2010. Spatial scale and the diversity of macroinvertebrates in a neotropical catchment. Freshwater Biology 55: 424–435.Google Scholar
  57. Linkov, I., D. Loney, S. Cormier, F. K. Satterstrom & T. Bridges, 2009. Weight-of-evidence evaluation in environmental assessment: review of qualitative and quantitative approaches. Science of the Total Environment 407: 5199–5205.PubMedGoogle Scholar
  58. Macedo, D. R., R. M. Hughes, R. Ligeiro, W. R. Ferreira, M. Castro, N. T. Junqueira, D. R. O. Silva, K. R. Firmiano, P. R. Kaufmann, P. S. Pompeu & M. Callisto, 2014. The relative influence of multiple spatial scale environmental predictors on fish and macroinvertebrate assemblage richness in cerrado ecoregion streams, Brazil. Landscape Ecology 29: 1001–1016.Google Scholar
  59. Magee, T. K., K. A. Blocksom & M. S. Fennessy. In Press. A national-scale vegetation multimetric index (VMMI) as an indicator of wetland condition across the conterminous United States. Environmental Monitoring and Assessment.Google Scholar
  60. Maloney, K. O., P. Munguia & R. M. Mitchell, 2011. Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. Journal of the North American Benthological Society 30: 284–295.Google Scholar
  61. Marzin, A., V. Archaimbault, J. Belliard, C. Chauvin, F. Delmas & D. Pont, 2012a. Ecological assessment of running waters: do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological Indicators 23: 56–65.Google Scholar
  62. Marzin, A., P. F. M. Verdonschot & D. Pont, 2012b. The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia 704: 375–388.Google Scholar
  63. Mendes, T., A. R. Calapez, C. L. Elias, S. F. Almeida & M. J. Feio, 2014. Comparing alternatives for combining invertebrate and diatom assessment in stream quality classification. Marine and Freshwater Research 65: 612–623.Google Scholar
  64. MEPAC (Ministry of Environmental Protection of the People’s Republic of China). 2002. Standard methods for the analysis of water and wastewater (4th ed.). Water and Wastewater Monitoring Methods, 4th ed. Chinese Environmental Science Publishing House, Beijing.Google Scholar
  65. Morse, J. C., L. Yang & L. Tian, 1994. Aquatic insects of China useful for monitoring water quality. HoHai University Press, Nanjing.Google Scholar
  66. Oberdorff, T., D. Pont, B. Hugueny & J. P. Porcher, 2002. Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology 47: 1720–1734.Google Scholar
  67. O’Connor, R. J., T. E. Walls & R. M. Hughes, 2000. Using multiple taxonomic groups to index the ecological condition of lakes. Environmental Monitoring and Assessment 61: 207–229.Google Scholar
  68. Ode, P. R., A. C. Rehn & J. T. May, 2005. A quantitative tool for assessing the integrity of southern coastal California streams. Environmental Management 35: 493–504.PubMedGoogle Scholar
  69. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2014. Vegan: community ecology package. R package version 2.0-10.
  70. Olsen, A. R. & D. V. Peck, 2008. Survey design and extent estimates for the wadeable streams assessment. Journal of the North American Benthological Society 27: 822–836.Google Scholar
  71. Olson, J. R. & C. P. Hawkins, 2013. Developing site-specific nutrient criteria from empirical models. Freshwater Science 32: 719–740.Google Scholar
  72. Olson, J. R. & C. P. Hawkins, 2017. Effects of total dissolved solids on growth and mortality predict distributions of stream macroinvertebrates. Freshwater Biology 62: 779–791.Google Scholar
  73. Paavola, R., T. Muotka, R. Virtanen, J. Heino, D. Jackson & A. Mäki-Petäys, 2006. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecological Applications 16: 368–379.PubMedGoogle Scholar
  74. Pan, Y., A. Herlihy, P. R. Kaufmann, J. Wigington, J. Van Sickle & T. Moser, 2004. Linkages among land-use, water quality, physical habitat conditions and lotic diatom assemblages: a multi-spatial scale assessment. Hydrobiologia 515: 59–73.Google Scholar
  75. Pan, Y., R. M. Hughes, A. T. Herlihy & P. R. Kaufmann, 2012. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA. Hydrobiologia 684: 241–260.Google Scholar
  76. Passy, S. I. & F. G. Blanchet, 2007. Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Diversity and Distributions 13: 670–679.Google Scholar
  77. Paulsen, S. G., A. Mayio, D. V. Peck, J. L. Stoddard, E. Tarquinio, S. M. Holdsworth, J. Van Sickle, L. L. Yuan, C. P. Hawkins, A. T. Herlihy, P. R. Kaufmann, M. T. Barbour, D. P. Larsen & A. R. Olsen, 2008. Condition of stream ecosystems in the US: an overview of the first national assessment. Journal of the North American Benthological Society 27: 812–821.Google Scholar
  78. Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family-and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27: 717–737.Google Scholar
  79. R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  80. Richards, C., R. Haro, L. Johnson & G. Host, 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwwater Biology 37: 219–230.Google Scholar
  81. Rooney, R. C. & E. T. Azeria, 2015. The strength of cross-taxon congruence in species composition varies with the size of regional species pools and the intensity of human disturbance. Journal of Biogeography 42: 439–451.Google Scholar
  82. Ruaro, R. & É. A. Gubiani, 2013. A scientometric assessment of 30 years of the Index of Biotic Integrity in aquatic ecosystems: applications and main flaws. Ecological Indicators 29: 105–110.Google Scholar
  83. Sály, P., P. Takács, I. Kiss, P. Bíró & T. Erös, 2011. The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human-modified landscape. Ecology of Freshwater Fish 20: 251–262.Google Scholar
  84. Schinegger, R., M. Palt, P. Segurado & S. Schmutz, 2016. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Science of the Total Environment 573: 1079–1088.PubMedGoogle Scholar
  85. Sheng, J. X., X. Chen, L. Yang, J. Wang & B. Li, 2010. Land use/land cover in Irtysh River-Zaysan Lake Basin over the past 20 years. Arid Land Geography 33: 189–195.Google Scholar
  86. Silva, D., A. T. Herlihy, R. M. Hughes, D. R. Macedo & M. Callisto, 2018. Assessing the extent and relative risk of aquatic stressors on stream macroinvertebrate assemblages in the neotropical savanna. Science of the Total Environment 633: 179–188.PubMedGoogle Scholar
  87. Song, M. Y., F. Leprieur, A. Thomas, S. Lek-Ang, T. S. Chon & S. Lek, 2009. Impact of agricultural land use on aquatic insect assemblages in the Garonne river catchment (SW France). Aquatic Ecology 43: 999–1009.Google Scholar
  88. Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16: 1267–1276.PubMedGoogle Scholar
  89. Stoddard, J. L., A. T. Herlihy, D. V. Peck, R. M. Hughes, T. R. Whittier & E. Tarquinio, 2008. A process for creating multimetric indices for large-scale aquatic surveys. Journal of the North American Benthological Society 27: 878–891.Google Scholar
  90. Tang, T., R. J. Stevenson & D. M. Infante, 2016. Accounting for regional variation in both natural environment and human disturbance to improve performance of multimetric indices of lotic benthic diatoms. Science of the Total Environment 586: 1124–1134.Google Scholar
  91. Vander Laan, J. J. & C. P. Hawkins, 2014. Enhancing the performance and interpretation of freshwater biological indices: an application in arid zone streams. Ecological Indicators 36: 470–482.Google Scholar
  92. Vander Laan, J. J., C. P. Hawkins, J. R. Olson & R. A. Hill, 2013. Linking land use, in-stream stressors, and biological condition to infer causes of regional ecological impairment in streams. Freshwater Science 32: 801–820.Google Scholar
  93. Voss, K. A., A. Pohlman, S. Viswanathan, D. Gibson & J. Purohit, 2012. A study of the effect of physical and chemical stressors on biological integrity within the San Diego hydrologic region. Environmental Monitoring and Assessment 184: 1603–1616.PubMedGoogle Scholar
  94. Wang, H., 1991. Fauna of Zhejiang: Mollusks. Zhejiang Science and Technology Publishing House, Zhejiang, Hangzhou.Google Scholar
  95. Wang, L., J. Lyons, P. Rasmussen, P. Seelbach, T. Simon, M. Wiley, P. Danehl, E. Baker, S. Niemela & P. M. Stewart, 2003. Watershed, reach, and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 60: 491–505.Google Scholar
  96. Wang, L., D. M. Robertson & P. J. Garrison, 2007. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: implication to nutrient criteria development. Environmental Management 39: 194–212.PubMedGoogle Scholar
  97. Wang, B., D. Liu, S. Liu, Y. Zhang, D. Lu & L. Wang, 2012. Impacts of urbanization on stream habitats and macroinvertebrate communities in the tributaries of Qiangtang River, China. Hydrobiologia 680: 39–51.Google Scholar
  98. Wang, J., Q. Zhou, C. Xie, J. Li & L. Wei, 2014. The community structure of macrozoobenthos and biological assessment of water quality in the Irtyrsh River of Xinjian. Chinese Journal of Ecology 33: 2420–2428.Google Scholar
  99. Ward, J. & L. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–820.Google Scholar
  100. Whittier, T. R., R. M. Hughes, J. L. Stoddard, G. A. Lomnicky, D. V. Peck & A. T. Herlihy, 2007. A structured approach for developing indices of biotic integrity: three examples from streams and rivers in the western USA. Transactions of the American Fisheries Society 136: 718–735.Google Scholar
  101. Wolman, M. G., 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union 35: 951–956.Google Scholar
  102. Wu, N., Q. Cai & N. Fohrer, 2012. Development and evaluation of a diatom-based index of biotic integrity (D-IBI) for rivers impacted by run-of-river dams. Ecological Indicators 18: 108–117.Google Scholar
  103. Yates, A. G. & R. C. Bailey, 2010. Covarying patterns of macroinvertebrate and fish assemblages along natural and human activity gradients: implications for bioassessment. Hydrobiologia 637: 87–100.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Eco-environmental Sciences ResearchNanjing Hydraulic Research InstituteNanjingPeople’s Republic of China
  2. 2.Laboratory of Aquatic Insects and Stream Ecology, Department of EntomologyNanjing Agricultural UniversityNanjingPeople’s Republic of China
  3. 3.Hydrology and Water Resources Survey Bureau of AltayAltayPeople’s Republic of China
  4. 4.Amnis Opes Institute and Department of Fisheries & WildlifeOregon State UniversityCorvallisUSA
  5. 5.Environmental Science and ManagementPortland State UniversityPortlandUSA
  6. 6.Altay Mountains Two-river Source ReserveAltayPeople’s Republic of China

Personalised recommendations