Advertisement

Approaches for phosphorus removal with calcium hydroxide and floating macrophytes in a mesocosm experiment: impacts on plankton structure

  • D. Frau
  • M. E. Spies
  • Y. Battauz
  • J. Medrano
  • R. Sinistro
Primary Research Paper

Abstract

Cultural eutrophication has promoted the application of several mitigation strategies in the last 50 years. In this study we tested the combined effects of two techniques: calcium hydroxide [(Ca(OH)2), lime] and a free-floating macrophyte (Salvinia rotundifolia Willd) to examine the soluble reactive phosphorus removal capability and the effects on plankton (phytoplankton and zooplankton) structure in a in situ lake mesocosms experiment. The experiment lasted 10 days (n = 12, 500 l each) with a control and three treatments (lime (CH), plants (FM), and the combination of both (CH + FM)). Samples of several physical and chemical variables (including nutrients) and phytoplankton were taken at the beginning, 2 days after, 4 days, and 10 days (end of the experiment). Zooplankton was sampled at the beginning and at the end. The highest depletion effect of soluble reactive phosphorus (SRP) was observed in presence of lime. Phytoplankton biovolume was highly and negatively affected in lime treatments (CH and CH + FM). Zooplankton changed from Rotifera to Cladocera and Copepoda in presence of macrophytes. We conclude that lime + plants reduces more effectively SRP, phytoplankton biovolume and promotes herbivorous zooplankton development; becoming by this way, in a suitable mitigation strategy to be explored in future field manipulation studies.

Keywords

Cyanobacteria Eutrophication Mitigation strategies Floating macrophytes Calcium hydroxide 

Notes

Acknowledgements

The authors thank C. De Bonis for his assistance in the field and Dr. de Tezanos Pinto for her language assistance. This study was funded by the project SECTEI 2010-044-13 awarded by Secretaría de Ciencia y Técnica de la Provincia de Santa Fe (Argentina) and by the Project PICT-2013 No 214-14 awarded by Agencia Nacional de Promoción Científica y Tecnológica.

References

  1. APHA, 2005. Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, United Stated.Google Scholar
  2. Alekseev, V. R., 2002. Copepoda. In Fernando, C. H. (ed.), A Guide to Tropical Freshwater Zooplankton. Backhuys Publication, Kerkwerve: 123–188.Google Scholar
  3. Babin, J., E. E. Prepas, T. P. Murphy & H. R. Hamilton, 1989. A Test of the Effects of Lime on Algal Biomass and Total Phosphorus Concentrations in Edmonton Stormwater Retention Lakes. Lake and Reservoir Management 5: 129–135.CrossRefGoogle Scholar
  4. Bakker, E. S., J. M. Sarneel, R. D. Gulati, z Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.CrossRefGoogle Scholar
  5. Bicudo, D. C., B. M. Fonseca, L. M. Bini, L. O. Crossetti, C. E. Bicudo & T. Araujo-Jesús, 2007. Undesirable side–effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology 52: 1120–1133.CrossRefGoogle Scholar
  6. Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton & J. D. Brookes, 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46: 1394–1407.CrossRefGoogle Scholar
  7. Copetti, D., K. Finsterle, L. Marziali, F. Stefani, G. Tartari, G. Douglas, K. Reitzel, B. M. Spears, I. J. Winfield, G. Crosa, P. D’Haese, S. Yasseri & M. Lürling, 2016. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research 97: 162–174.CrossRefGoogle Scholar
  8. Debusk, D. F. & K. R. Reddy, 1987. Growth and nutrient uptake potential of Azolla caroliniana Willd and Salvinia rotundifolia Willd as a function of temperature. Environmental and Experimental Botany 27: 215–221.CrossRefGoogle Scholar
  9. Dhote, S. & S. Dixit, 2009. Water quality improvement through macrophytes – a review. Environmental Monitoring Assessment 152: 149–153.CrossRefGoogle Scholar
  10. Dittrich, M. & R. Koschel, 2002. Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49–57.CrossRefGoogle Scholar
  11. Gaudet, J. J. & D. B. Koh, 1968. Effect of Various Growth Regulators on Salvinia rotundifolia in Sterile Culture. Journal of the Torrey Botanical Club 95: 92–102.CrossRefGoogle Scholar
  12. Gulati, R. D., L. M. D. Pires & E. van Donk, 2008. Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnologica 38: 233–247.CrossRefGoogle Scholar
  13. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 9.Google Scholar
  14. Hillebrand, H., C. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  15. Huser, B., S. Huser, H. Egemose, H. Harper, M. Hupfer, H. Jensen, K. M. Pilgrim, K. Reitzel, E. Rydin & M. Futter, 2016. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Research 97: 1–174.CrossRefGoogle Scholar
  16. Ibelings, B. W., M. Bormans, J. Fastner & P. M. Visser, 2016. CYANOCOST special issue on cyanobacterial blooms: synopsis—a critical review of the management options for their prevention, control and mitigation. Aquatic Ecology 50: 595–605.CrossRefGoogle Scholar
  17. Immers, A. K., M. T. Van der Sande, R. M. Van der Zande, J. J. M. Geurts, E. Van Donk & E. S. Bakker, 2013. Iron addition as a shallow lake restoration measure: impacts on charophyte growth. Hydrobiologia 710: 241–251.CrossRefGoogle Scholar
  18. Jančula, D. & B. Maršálek, 2011. Critical review of available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85: 1415–1422.CrossRefGoogle Scholar
  19. Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. Branco, V. Huszar & F. Scasso, 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. Chapter 11. In Reddy, M. V. (ed.), Tropical Eutrophic Lakes: Their Restoration and Management. Science Publishers, Enfield: 331–359.Google Scholar
  20. José de Paggi, S. B. & J. C. Paggi, 1995. Determinación de la abundancia y biomasa zooplanctónica. In Lopretto, E. & G. Tell (eds), Ecosistemas de Aguas Continentales. Metodologías para su estudio, Ediciones Sur: 315–321.Google Scholar
  21. Komárek, J. & B. Fott, 1983. Chlorophyceae, chlorococcales. In: Huber-Pestalozzi, G. (ed.), Das Phytoplankton des Sdwasswes. Die Binnenggewasser, vol. 16(5). Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  22. Komárek, J. & K. Anagnostidis, 1999. Cyanoprokariota. 1. Chroococcales. In: Ettl H., Gärtner G., Heynig G. and Mollenhauer D. (eds), Subwasserflora von Mitteleuropa.19. Gustav Fisher, Jena, Stutgart.Google Scholar
  23. Komárek, J. & M. Anagnostidis, 2005. Cyanoprokaryota 2. Teil/2nd Part: Oscillatoriales. In: Bu¨ del B., Krienitz L., Gärtner G. and Scnagerl M. (eds), Süsswasserflora von Mitteleuropa 19/2, Elsevier/Spektrum, Heidelberg.Google Scholar
  24. Korínek, V., 2002. Cladocera. In Fernando, C. H. (ed.), A guide to tropical freshwater zooplankton. Backhuys Publishers, Kerkwerve: 69–122.Google Scholar
  25. Korovchinski, N.M., 1992. Sididae and Holopedidae (Crustacea: Daphniiformes). Guides to identification of the microinvertebratesof the continental waters of the world. SPB Academic Publishing, Berlin.Google Scholar
  26. Kozlowsky-Suzuki, B., M. Karjalainen, M. Lehtiniemi, J. Engström-Öst, M. Koski & P. Carlsson, 2003. Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytemora affinis in the presence of the toxic cyanobacterium Nodularia spumigena. Marine Ecology Progress Series 249: 237–249.CrossRefGoogle Scholar
  27. Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae. 3. Teil Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Susswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.Google Scholar
  28. Kuiper, J. J., M. J. J. M. Verhofstad, E. L. M. Louwers, E. S. Bakker, R. J. Brederveld, L. P. A. van Gerven, A. B. G. Janssen, J. J. M. de Klein & W. M. Mooij, 2017. Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys? Environmental Management 59: 619–634.CrossRefGoogle Scholar
  29. Lee, R. D., 2008. Phycology. Cambridge University Press, U.K.: 561.CrossRefGoogle Scholar
  30. Liu, Z., J. Hu, P. Zhong, X. Zhang, J. Ning, S. E. Larsen, D. Chen, Y. Gao, H. He & E. Jeppesen, 2018. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Research.  https://doi.org/10.1016/j.watres.2018.09.007.CrossRefPubMedGoogle Scholar
  31. Luengo, C. V., M. A. Volpeb & M. J. Avenaa, 2017. High sorption of phosphate on Mg-Al layered double hydroxides: Kinetics and equilibrium. Journal of Environmental Chemical Engineering 5: 4656–4662.CrossRefGoogle Scholar
  32. Maine, M. A., N. Suñe, H. Hadad & G. Sánchez, 2007. Temporal and spatial variation of phosphate distribution in the sediment of a free surface water constructed wetland. Science of the Total Environment 380: 75–83.CrossRefGoogle Scholar
  33. Maine, M. A., N. Suñe, H. Hadad, G. Sánchez & C. Bonetto, 2009. Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. Journal of Environmental Management 90: 355–363.CrossRefGoogle Scholar
  34. Malone, C. F. S., K. R. S. Santos & C. L. Sant’Anna, 2012. Algas e cianobactérias de ambientes extremos, do Pantanal Brasileiro. Oecologia Austral 16: 745–755.CrossRefGoogle Scholar
  35. McFarland, D.G., L.S. Nelson & M.J. Grodowitz, 2004. Salvinia molesta D. S. Mitchell (Giant Salvinia) in the United States: A review of species ecology and Approaches to Management. Aquatic Plant Control Research Program. U.S. Army Corps. Of Engineers, Washington D.C: 42.Google Scholar
  36. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  37. Modenutti, B., 2014. Mixotrophy in Argentina freshwaters. Advances in Limnology 65: 359–374.CrossRefGoogle Scholar
  38. Murphy, T. P. & E. E. Prepas, 1990. Lime treatment of hardwater lakes to reduce eutrophication. Verhandlungen des Internationalen Verein Limnologie 24: 327–334.Google Scholar
  39. Owens, C.S. & M. Smart, 2010. Smart Effects of Nutrients, Salinity, and pH on Salvinia molesta (Mitchell) Growth. ERDC/TN APCRP-EA-23.Google Scholar
  40. Owens, C. S., R. M. Smart, D. R. Honnell & G. O. Dick, 2005. Effects of pH on growth of Salvinia molesta Mitchell. Journal of Aquatic Plant Management 43: 34–38.Google Scholar
  41. Paerl, H. W., W. S. Gardner, K. E. Havens, A. R. Joyner, M. J. McCarthy, S. E. Newell, B. Qin & J. T. Scott, 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and antropogenic nutrients. Harmful Algae 54: 213–222.CrossRefGoogle Scholar
  42. Panosso, R., P. Carlsson, B. Kozlowsky-Suzuki, S. M. Azevedo & E. Granéli, 2003. Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25: 1169–1175.CrossRefGoogle Scholar
  43. Prepas, E. E., T. P. Murphy, J. M. Crosby, D. T. Walty, J. T. Lim, J. Babin & P. Chambers, 1990. Reduction of phosphorus and chlorophyll a concentration following CaCO3 and Ca(OH)2 additions to hypereutrophic Figure Eight Lake, Alberta. Environmental Science and Technology 24: 1252–1258.CrossRefGoogle Scholar
  44. Prepas, E. E., B. Pinel-Alloul, P. A. Chambers, T. P. Murphy, S. Reedyk, G. Sanland & M. Serediak, 2001. Lime treatment and its effects on the chemistry and biota of hardwater eutrophic lakes. Freshwater Biology 46: 1049–1060.CrossRefGoogle Scholar
  45. Rastogi, R., D. Madamwar & A. Incharoensakdi, 2015. Bloom dynamics of Cyanobacteria and their toxins. Environmental Health Impact and Mitigation Strategies 6: 1–22.Google Scholar
  46. Reynolds, C., 2006. Ecology of Phytoplankton. University Press (United Kingdom), Cambridge: 535.CrossRefGoogle Scholar
  47. Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  48. Santos, K. R. S. & C. L. Sant’Anna, 2010. Cyanobacteria from different types of lakes (“salina”, “salitrada” and “baía”) representative of the Pantanal da Nhecolândia, MS, Brazil. Brazilian Journal of Botany 33: 61.Google Scholar
  49. Sinistro, R., I. Izaguirre & V. Asikian, 2006. Experimental study on the microbial plankton community in a South American wetland (Lower Paraná River Basin) and the effect of the light deficiency due to the floating macrophytes. Journal of Plankton Research 28: 753–768.CrossRefGoogle Scholar
  50. Tell, G. & V. Conforti, 1986. Euglenophyta Pigmentadas de Argentina. In: Cramer (ed.), Bibliotheca Phycologica, Berlin.Google Scholar
  51. Tripathi, B. D., J. Srivastava & K. Misra, 1991. Nitrogen and phosphorus removal capacity of four chosen aquatic macrophytes in tropical freshwater ponds. Environmental Conservation 18(143): 147.Google Scholar
  52. Utermöhl, H., 1958. ZurVervollkommnung der quantitative Phytoplankton: methodik. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie. 9: 1–38.Google Scholar
  53. Wang, Z., S. Lu, D. Wua & F. Chen, 2017. Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite. Chemical Engineering Journal 327: 505–513.CrossRefGoogle Scholar
  54. Weithoff, G., 2003. The concepts of ‘‘plant functional types’’ and ‘‘functional diversity’’ in lake phytoplankton— a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.CrossRefGoogle Scholar
  55. Zalocar de Domitrovic, Y. & N.I. Maidana, 1997. Taxonomic and Ecological Studies of the Parana River Diatom Flora (Argentina). In: J. Cramer (ed.). Biblioteca diatomológica, Stuttgart, Berlin.Google Scholar
  56. Zar, J. H., 2010. Bioestatistical Analysis. Prentice Hall, New Jersey.Google Scholar
  57. Zeng, L., F. Hea, Z. Daia, D. Xua, B. Liua, Q. Zhoua & Z. Wua, 2017. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake. Ecological Engineering 106: 578–587.CrossRefGoogle Scholar
  58. Zhang, Y. & E. E. Prepas, 1996. Short-term effects of Ca(OH)2 additions on phytoplankton biomass: a comparison of laboratory and in situ experiments. Water Research 5: 1285–1294.CrossRefGoogle Scholar
  59. Zhang, Y., A. Ghadouani, E. E. Prepas, B. Pinel-Alloul, S. Reedyk, P. A. Chambers, R. D. Robarts, G. Methot, A. Raik & M. Holst, 2001. Response of plankton communities to whole-lake Ca(OH)2 and CaCO3 additions in eutrophic hardwater lakes. Freshwater Biology 46: 1105–1119.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratorio de PlanctonInstituto Nacional de Limnología (CONICET-UNL)Santa FeArgentina
  2. 2.Facultad de Humanidades y CienciasUniversidad Nacional del LitoralSanta FeArgentina
  3. 3.Facultad de Ciencias y TecnologíaUniversidad Autónoma de Entre RíosOro VerdeArgentina
  4. 4.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y NaturalesIEGEBA (UBA-CONICET), UBABuenos AiresArgentina

Personalised recommendations